The Presence of Massive Galaxies at z>5

T. Wiklind ESA/STScl B. Mobasher ESA, M. Dickinson NOAO, H. Ferguson STScl, M. Giavalisco STScl, N. Grogin JHU, N. Panagia STScl

MGCT II

July 1, 2021

 Massive galaxies are found at z ~ 5 – 6 (10¹⁰ – 10¹¹ M_o) in dropout samples (Yan et al. 2004, 2006; Eyles et al. 2005; Stark et al. 2006; ...)

One very massive galaxy (5 10¹¹ M_o) was found in HUDF (J–band dropout) (*Mobasher et al. 2005*)

 These galaxies are 'old' (several 100 Myrs) with low levels of star formation and usually little dust

 \checkmark Most have photometric redshifts – some with z_{spec} exist

July 1, 2021

One evolved and massive galaxy found in the Hubble Ultra Deep Field at z=6.5 and with $M_*=5 \ 10^{11} M_o$ (Mobasher et al. 2005)

HUDF-JD2

July 1, 2021

B > 30.61

V > 31.02

i > 30.88

z > 30.26

z = 6.5 no current star formation age ~ 0.65 – 1.0 Gyr $E_{B-V} = 0.0$ $M_* = 5 \ 10^{11} M_o$ Z ~ 0.2 – 1.0 Z_o

Monte Carlo simulations results in ~15% low-z solutions

JD2 (J-dropout) in HUDF

Removing very dusty passively evolving galaxies at z < 4 ~ 5% low-z solutions

Monte Carlo simulations results in ~15% low-z solutions

Are there more galaxies at z>5 of similar type, and if so, how do we find them?

Spitzer/IRAC is crucial for these studies Probes the optical bands for z>5

Population synthesis fitting at $z \sim 5$:

- 1. Redshift (Lyman– and Balmer break)
- 2. m_{3.6} (~V-band)
- 3. Age (Balmer break at ~4000Å)
- 4. Other parameters: dust, metallicity, SFH, IMF, ...

	z = 4	z = 5	z = 6	z = 7
3.6 μ m	7200	6000	5143	4500 Å
4.5μm	9000	7500	6429	5625 Å
5.7μm	11400	9500	8143	7125 Å
8.0 μ m	16000	13333	11429	10000 Å

July 1, 2021

The Balmer break is a prominent feature for stellar populations age t > 100 Myrs

AB

There is no 'clean' way of color selecting old z > 5 galaxies Use a two-step process:

Color selection:

- The main index is the $K_s\text{--}3.6\mu\text{m}$ color
- Use J–K and H–3.6 μ m as secondary color
- This will result in a relatively large fraction of interlopers

Population synthesis models (Bruzual & Charlot 2003):

- Redshift range z = 0.2 8.6
- Age range = 5 Myr 2.4 Gyr
- Calzetti attenuation law $E_{B-V} = 0.0 1.0$
- IGM absorption
- Metallicities Z = 0.2, 0.4 1.0, 2.5 Z
- Salpeter IMF: 0.1 100 M_o
- Star formation history: exponentially declining SFR
 - τ **= 0 1.0 Gyr**

July 1, 2021

K-selected sample from GOODS-S

HST/ACS (BV*iz*); VLT/ISAAC (JHK_s); SST/IRAC (3.6, 4.5, 5.8, 8μm)

5754 sources: 155 / 85 selected; 14/12 z > 5 (total 17)

~82% complete at K_{AB} = 23.5

July 1, 2021

Removing z~2 old and dusty galaxies

Best-fit parameters z = 5.1 $E_{B-V} = 0.0$ age = 0.8 Gyr $\tau = 0$ $Z = 0.2 Z_o$ $z_{form} = 12$ $M_* = 4 \ 10^{11} M_o$ SFR ~ 0 M_o/yr

July 1, 2021

Best-fit parameters z = 5.2 $E_{B-V} = 0.0$ age = 0.9 Gyr $\tau = 0.3 \text{ Gyr}$ $Z = 0.2 Z_0$ $Z_{form} = 17$ $M_* = 0.7 \ 10^{11} M_0$ SFR ~ $12 M_0/yr$

July 1, 2021

Also in the sample studied by Stark et al. 2006 (astro-ph/0604250)

July 1, 2021

A total of 11 BBGs at z > 5 (including JD2)

Typical values:

July 1, 2021

- Stellar masses ~ 2 10¹¹ M_o
- Ages 0.2 1.0 Gyr
- Modest extinction
- Little or no ongoing star formation
- Formation redshift 6 25+
- ~60% detected with MIPS at 24 μm
- Small systems (radii ~ 2-3 kpc)
- Not detected in X-rays / radio continuum (except one case: weak X-ray emission 3 10⁴³ erg s⁻¹)

Star forming galaxies at z = 6.5

July 1, 2021

From Yan et al. 2006

July 1, 2021

How well can we trust the results?

Photometric redshift

reasonably robust (Lyman break + Balmer break)

Completeness

possibly significant completeness corrections definition of the selection function and effective volume brings the number/stellar mass densities upwards

• MIPS 24µm detections

usually interpreted as PAHs in star forming systems low-z solutions: very dusty passively evolving galaxies dust obscured AGNs at $z \sim 5$?

Stellar mass estimates

model dependent (M/L different in BC03 and M05) IMF and star formation history dust properties different at z>5

July 1, 2021

MIPS 24 μ m detections in 6 out of 11 BBGs (restframe 4 μ m if sources at z ~ 5)

SED of obscured AGN would not contribute significantly to optical part of SED

Alternatively, all MIPS detected galaxies at z~2, but most z ~ 2 solutions are for dusty old and passively evolving galaxies

July 1, 2021

How well can we trust the results?

Photometric redshift

reasonably robust (Lyman break + Balmer break)

Completeness

possibly significant completeness corrections definition of the selection function and effective volume brings the number/stellar mass densities upwards

• MIPS 24µm detections

usually interpreted as PAHs in star forming systems low-z solutions: very dusty passively evolving galaxies dust obscured AGNs at $z \sim 5$?

Stellar mass estimates

model dependent (M/L different in BC03 and M05) IMF and star formation history dust properties different at z>5

July 1, 2021

The M05 models vs. BC03 models

BC03 (Bruzual & Charlot 2003)

Padova tracks: convective overshooting —> longer MS life times for given stellar mass and RGB develops after ~1.0Gyr

TP–AGB calibration: reproduce the maximum **TP–AGB** luminosity (LMC clusters)

M05 (Maraston 2005)

Frascati tracks: no convective overshooting --> shorter MS life times for given stellar mass and RGB develops after ~0.5Gyr

TP-AGB calibration: the fractional contribution of the TP-AGB to total bolometric light (LMC clusters)

The net effect is that M05 are redder for a given age (0.2 – 2 Gyr). Difference most pronounced at NIR wavelengths

July 1, 2021

...but, degeneracies may still dominate

MGCT II

ID	Z _{spec}	Z _{phot}	E_{B-V}	age Gvr	τ Gvr	Z Z	log(M*) Mo	M _* (BC03)/M _* (M05)			
BC03 (age $< 2.5 \text{ Gyr}$)											
8238	1.39	1.0	0.700	0.9	0.3	0.4	10.440	0.61			
4650	1.55	1.6	0.200	1.8	0.4	0.4	11.366	0.46			
1025	1.73	1.6	0.250	2.0	0.6	0.4	10.875	1.21			
3523	1.76	1.6	0.300	0.3	0.0	2.5	10.501	0.50			
3650	1.91	1.8	0.200	0.6	0.0	1.0	10.885	0.92			
3574	1.98	2.0	0.150	0.9	0.1	0.4	10.592	0.93			
1446	2.47	3.0	0.200	0.5	0.0	0.4	10.947	3.28			
BC03	(age <1	.1 Gyr)									
8238	1.39	1.0	0.700	0.9	0.3	0.4	10.440	0.61			
4650	1.55	1.6	0.325	0.9	0.2	0.2	11.304	0.40			
1025	1.73	1.7	0.225	0.9	0.2	1.0	10.817	1.06			
3523	1.76	1.6	0.300	0.3	0.0	2.5	10.501	0.50			
3650	1.91	1.8	0.175	0.8	0.1	1.0	10.906	0.97			
3574	1.98	2.0	0.150	0.9	0.1	0.4	10.592	0.93			
1446	2.47	3.1	0.175	0.8	0.1	0.2	10.978	3.52			
M05 n	nodel										
8238	1.39	1.39	0.15	0.7	0.3t	2.0	10.653	0.61			
4650	1.55	1.55	0.15	3.5	1.0	0.5	11.699	0.40			
1025	1.73	1.72	0.07	1.4	0.3	1.0	10.792	1.06			
3523	1.76	1.68	0.40	0.3	0.1t	0.2	10.799	0.50			
3650	1.91	1.88	0.20	0.3	0.0	2.0	10.919	0.97			
3574	1.98	1.94	0.30	0.2	0.0	2.0	10.623	0.93			
1446	2.47	2.74	0.00	0.4	0.0	2.0	10.431	3.52			

July 1, 2021

using 10 photometric data points allowing a larger parameter space

using 14 photometric data points

SUMMARY

- Color selection (NIR & IRAC) + photometric redshift can identify z>5 galaxies with ages >100 Myr and M_{*} in excess of 10^{11} M_o. The selection is mainly based on identifying the Balmer break over K-3.6µm
- In the GOODS South field we find 11 such candidates (including JD2)
- The objects found are characterized by little or no ongoing star formation, ages of several 100 Myrs, masses of ~ 10^{11} M_o and little or no dust extinction.
- The number density of the 'Balmer break' galaxies corresponds to dark matter halos of ~1.3 10^{12} M_o, giving M_{baryon}/M_{halo} ~ 0.15
- Stellar mass could be overestimated if: IMF more top-heavy, population synthesis models systematically wrong
- Formation redshifts range 6 25+, within the reionization era

$z = 2.6, E_{B-V} = 0.2, age = 1.8 \text{ Gyr}, \tau = 0.1, Z = Z_o$

similar to IRAC selected EROs (IEROs) (cf. Yan et al. 20

July 1, 2021

How secure are the photometric redshifts?

MGCT II

Test the method on galaxies with spectroscopic redshift. *Works well for ~95% of the test sample.*

For Balmer break galaxies at highz, the photometric redshift is determined by (1) the Balmer break, and (2) the Lyman break. *This makes the photo-z robust*

July 1, 2021

