The Accretion History of SMBHs in Massive Galaxies

Kate Brand STScl

Collaborators: M. Brown, A. Dey, B. Jannuzi, and the XBootes and Bootes MIPS teams.

Tucson, November 2006

Questions

- How did the mass of SMBHs grow?
- How is this related to the build-up of the red sequence?
- What is connection between SMBH growth and massive galaxy evolution?
- Have SMBHs accreted a significant fraction of their mass between z=1 and the present?
 - An X-ray and Mid-IR stacking analysis of ~30,000 red galaxies from the NDWFS Bootes field.

NOAO Deep Wide-Field Survey.

9 deg²: Bw, R, I, K ~ 27.1, 26.1, 25.4, 19.0 mag (Vega)

Pl's: A. Dey, B. Jannuzi

The Red Galaxy Survey

 ~ 30,000 red galaxies selected from NDWFS to be on red sequence (see Brown et al. 2006)

Chandra and Spitzer imaging

Stacking the X-ray images gives a highly significant signal

- Stacked up the X-ray images in different subsets of the data to obtain a mean X-ray luminosity as a function of galaxy properties.
- 5-ks on a single object but for 1000 galaxies, equivalent to a 5-Ms observation on the mean object.

Basic X-ray Stacking Results

- <L_x> ~ 10⁴¹ ergs s⁻¹ is at least 10x too high to be due to stellar sources.
- → The X-ray emission is dominated by accretion onto a SMBH
- <L_x> is ~10-100x fainter than typical Seyferts
- → The accretion rate is very low and/or radiatively inefficient
- The X-ray spectrum is hard and can be explained by:
 - Absorbed $(N_H = 2 \times 10^{22} \text{ cm}^{-2}) \Gamma = 1.7 \text{ power-law}$
 - Unabsorbed Γ=0.7 power-law (e.g. ADAF)
- → The AGN must be obscured or radiatively inefficient

The mean X-ray luminosity increases with redshift

$$Lx \propto (1+z)^{4.0 \pm 0.5}$$

[excluding X-ray detected sources:

$$Lx \propto (1+z)^{4.1 \pm 0.7}$$

More massive galaxies are more X-ray luminous

The mean X-ray luminosity increases as a function of optical luminosity and stellar mass.

Converting X-ray luminosity to a nuclear accretion rate

$$\dot{\epsilon} \dot{M} = L_{bol}/c^2$$

$$\dot{M} = 1.76 \times 10^{-5} M_{\odot}/\text{yr} (0.1/\epsilon) (\text{Lx}/10^{41}) \text{ x C}_{\text{B}}$$

 ϵ = radiative efficiency of accretion energy C_B =bolometric correction

The Build-up in the mass of the SMBHs

$$M_{BH} \sim 0.002~M_{bulge} \rightarrow M_{BH} \sim 2~x~10^8~M_{\odot}$$

Integrating accretion rate from z=1 to present -> Assuming $\epsilon = 0.1$ - increase in BH mass $\sim 9 \times 10^7 \, \mathrm{M}_{\odot} \ (\sim 50\%)$ \sim half of build-up due to $\sim 1\%$ of population.

- What population are we tracing?
- may be accreting at lower efficiencies: $\epsilon = 0.001 \; (ADAF)$ - increase in BH mass $\sim 9 \times 10^9 \; M_{\odot}$
- Mid-IR properties can help determine whether the hard X-ray spectrum is due to obscuration or low efficiency accretion flow.

Stacking the 24µm images gives a highly significant signal

Basic L_{IR} properties of red galaxies

- 20% of red galaxies have f₂₄>0.3 mJy
- Mean flux ~ 0.3 mJy (~0.04 for f₂₄<0.3 mJy sources)
 - → red galaxies go through 'active' phases.
- Of the X-ray detected sources, 50% have f₂₄>0.3 mJy
 - → link between X-ray and mid-IR activity.

The mean LIR increases with redshift

$$Lx \propto (1+z)^{4.8 \pm 0.6}$$

Assuming IR SED of APM 08279+5255

$$\rightarrow$$
 L_{IR} (8-1000 μ m)

But what is contribution of AGN / SF?

- Do appear to contain large amounts of dust

Conclusions - Red Galaxies

- X-ray luminosities imply weak AGN activity.
- Hard X-ray spectra imply obscured or radiatively inefficient AGNs.
- Lx \propto (1+z) $^{4.0 \pm 0.5}$
- If $\varepsilon = 0.1$, SMBHs increase in mass by order 50%.
- Large mid-IR luminosities suggest large amounts of warm dust.
- Much of the X-ray & 24µm luminosity is from a small fraction of sources, consistent with short bursts of activity.
- SMBHs in red galaxies could be growing by ~50% between z=1 and the present in bursty but optically obscured phases.

Extra Slides

Multiwavelength Observations of the Bootes Field

VLA P-band	90 cm	7 sq.deg.	100μЈу	100% complete; van Breugel, PI
VLA L-band	21 cm	1 sq.deg.	15μЈу	100% complete; Higdon, PI
VLA (FIRST)	21 cm	9 sq.deg.	1mJy	100% complete; public
Westerbork	21 cm	7 sq.deg.	8µJy	100% complete; Rottgering, PI
Spitzer/MIPS	24,70,160μm	9 sq.deg.	3.0, 30, 100mJy	100% complete; Jan 2004 GTO
Spitzer/IRAC	3.6,4.5,5.8,8µm	9 sq.deg.	6.4, 8.8, 51, 50μJy	100% complete; Eisenhardt et al.
NOAO	J, Ks	5 sq.deg.	23 mag	100% complete; Elston et al. (2005)
NOAO	K, Ks	9 sq.deg.	19.2 mag	100% complete
NOAO	J, H	9 sq.deg.	21 mag	40% complete
NOAO	B_W, R, I	9 sq.deg.	25.5-26.6 mag	100% complete
NOAO	U	9 sq.deg.	25 AB mag	100% complete
NOAO	U	1 sq.deg.	26 AB mag	100% complete
GALEX	FUV, NUV	1 sq.deg.	26 AB mag	100% complete, GTO
GALEX	FUV, NUV	9 sq.deg.	25 AB mag	in progress, GTO
Chandra	0.5-2 keV	9 sq.deg.	4.7e-15 erg/s/cm ²	100% complete
Chandra	2-7 keV	9 sq.deg.	1.5e-14 erg/s/cm ²	100% complete
NOAO/Keck	spectroscopy	sparse	24 mag	in progress (400 so far)
MMT/Hectosp	spectroscopy	9 sq.deg.	R~20.5 mag	completed
Spitzer/IRS	spectroscopy	sparse		in progress

Contribution of Stellar Sources - HMXBs

Short lifetime -> SFR

Population Synthesis fits to optical photometry

-> SFR

Grimm et al.2003

-> Expected luminosity

8 % of total Luminosity in each redshift bin

Contribution of Stellar Sources - LMXBs

Long lifetime

- -> stellar mass
- -> absolute K mag

Kim et al. 2004

-> Expected luminosity

~10 % of total Luminosity in each redshift bin