

Suppressed Star Formation and AGN in Massive Galaxies at z~2.5

Mariska Kriek (Leiden / Yale)

Pieter van Dokkum, Marijn Franx, Garth Illingworth,
Natascha Forster Schreiber, Ivo Labbe, Danilo Marchesini
Ryan Quadri, Gregory Rudnick & the MUSYC collaboration

November 2 2006

- ♦ When was the star formation suppression in massive galaxies initiated?
- ♦ What physical mechanism is responsible for this suppression?

- ♦ When was the star formation suppression in massive galaxies initiated?
- ♦ What physical mechanism is responsible for this suppression?

♦ When was the star formation suppression in massive galaxies initiated?

Clues for z>2 (e.g., Daddi et al. 2005, Labbe et al. 2005, Reddy et al. 2005, Papovich et al. 2006)

- ♦ When was the star formation suppression in massive galaxies initiated?
 - Clues for z>2 (e.g., Daddi et al. 2005, Labbe et al. 2005, Reddy et al. 2005, Papovich et al. 2006)
- **♦** Problems:
 - most studies rely on photometric redshifts
 - mostly broadband photometric studies

- ♦ When was the star formation suppression in massive galaxies initiated?
 - Clues for z>2 (e.g., Daddi et al. 2005, Labbe et al. 2005, Reddy et al. 2005, Papovich et al. 2006)
- **♦** Problems:
 - most studies rely on photometric redshifts
 - mostly broadband photometric studies

Why are broadband photometric studies not sufficient?

Why are broadband photometric studies not sufficient?

Why are broadband photometric studies not sufficient?

GNIRS Spectroscopic Survey

- ♦ Gemini-South / GNIRS
 - 26 Galaxies
 - cross-dispersed spectra: 1.0-2.5 μm
 - 1-4 hours per spectrum

GNIRS Spectroscopic Survey

- **♦** Gemini-South / GNIRS
 - ▶ 26 Galaxies
 - cross-dispersed spectra: 1.0-2.5 μm
 - ▶ 1-4 hours per spectrum
- **♦** Selection
 - MUSYC survey

 - **K** < 19.7

Stellar mass vs. K-magnitude

GNIRS Spectroscopic Survey

- **♦** Gemini-South / GNIRS
 - 26 Galaxies
 - cross-dispersed spectra: 1.0-2.5 μm
 - ▶ 1-4 hours per spectrum
- **♦** Selection
 - MUSYC survey

 - **K** < 19.7
- ♦ Spectroscopic redshifts for all 26 galaxies
 - \blacktriangleright 6 galaxies with 1.8 < z_{spec} < 2.0
 - **▶** 20 Galaxies with 2.0 < z_{spec} < 2.7

Galaxies without detected Ha emission

Galaxies without detected Ha emission

Galaxies without detected Ha emission

Stellar populations in galaxies at z>2

Stellar populations in galaxies at z>2

Stellar populations in galaxies at z>2

Do we miss obscured star formation?

♦ When was the star formation suppression in massive galaxies initiated?

- ♦ When was the star formation suppression in massive galaxies initiated?
 - ▶ In about half of the massive galaxies at z~2.5 the star formation is already suppressed

- ♦ When was the star formation suppression in massive galaxies initiated?
 - In about half of the massive galaxies at z~2.5 the star formation is suppressed
- ♦ What physical mechanism is responsible for the suppression?
 - AGN feedback? (e.g., Croton et al., Hopkins et al)

- ♦ When was the star formation suppression in massive galaxies initiated?
 - In about half of the massive galaxies at z~2.5 the star formation is suppressed
- ♦ What is the role of AGN in the transition from star-forming to quiescent galaxy?

Stellar populations of AGN candidates

Stellar masses of AGN candidates at z~2.5

Stellar masses of AGN candidates at z~2.5

AGN fraction dependent on the stellar mass of the host galaxies?

Color-Mass diagram SDSS + z~2.5

Color-Mass diagram SDSS + z~2.5

Color-Mass diagram SDSS + z~2.5

Conclusions

- ♦ In about half of the massive galaxies at z~2.5 the star formation is already strongly suppressed
- ♦ About 20% of the massive galaxies at z~2.5 may host an AGN

Questions

- ◆ Do quiescent galaxies at z~2.5 only exist at the high-mass end?
- ★ At what redshift was the suppression in the most massive galaxies initiated?
- ♦ What is the role of AGN in the transition from star-forming to quiescent galaxy?