Dynamical Models of Elliptical Galaxies in z=0.5 Clusters

Measuring M/L Evolution without Fundamental Plane Assumptions

Roeland van der Marel (STScI) In Collaboration with: Pieter van Dokkum (Yale)

Massive Galaxies over Cosmic Time II

Tucson, AZ

M/L Evolution using FP

- Distant galaxy observations yield effective quantities
 - High resolution imaging: R, I
 - Deep Spectroscopy: σ
- Fundamental Plane (FP)
 - $R = C \sigma^{\alpha} I^{\beta}$, C = FP zeropoint
- FP zeropoint evolution w.r.t. Coma
 - \Rightarrow M/L evolution
 - Provided that assumptions are valid
- M/L evolution
 - \Rightarrow galaxy ages
 - \Rightarrow Constraint on galaxy formation theories

Nov 1, 2006

Massive Galaxies over Cosmic Time II

Tucson, AZ

Results

• Data

- New: 3 clusters at z=0.5
- Literature: 11 other clusters
- Literature: field galaxies
- Interpretation
 - Homogeneous analysis
 - Various IMFs, progenitor bias
- Results for M > $10^{11} \text{ M}_{\odot}$
 - Cluster Galaxies: d log (M/L_B) / dz = -0.555 \pm 0.042
 - $z(formation) = 2.0 \pm 0.2$ for "standard" IMF
 - z(formation) can be larger for top-heavy IMF
 - Field Galaxies: younger by $4.1 \pm 2.0\%$ (~0.4 Gyr)

Massive Galaxies over Cosmic Time II

Tucson, AZ

vD & vdM (2006, Paper I)

Motivations for More Detailed Analysis

- FP to M/L conversion relies on untested assumptions
 - R, I, σ and internal structure may evolve with z; not just M/L
 - Plausible models exist in which M/L does not follow FP (e.g., Almeida, Baugh & Lacey 2006)
- FP results counter-intuitive given hierarchical formation scenarios
- Some assumptions can be avoided by using more data
 - R, I \Rightarrow Surface brightness profile + axial ratio
 - $\sigma \Rightarrow$ Resolved velocity dispersion and rotation velocity profiles
- How: Modeling of Internal Dynamical Structure
 - Tools well-developed and tested in local universe
 - vdM & vD (2006, Paper II)

Massive Galaxies over Cosmic Time II

Tucson, AZ

Sample & Data

Three MORPHS clusters

- CL 3C295 (z=0.456)
- CL 0016+1609 (z=0.546)
- CL 1601+4253 (z=0.539)
- 25 visually-classified early-type galaxies
 - 20 ellipticals, 2 E/S0, 1 S0/E, 1 SO, 1 S0/Sb
- HST/WFPC2 imaging (Archival)
- Keck/LRIS spectroscopy (New)

Massive Galaxies over Cosmic Time II

Tucson, AZ

Nov 1, 2006

Models

- **Oblate axisymmetric**
- Constant ellipticity and PA
- Parameterized $\rho(R,z)$
- Inclination chosen statistically
- Potential from Poisson equation
- **Dynamics from Jeans equations** DF Assumption: f(E,Lz)
- Projection along line-of-sight
- Convolution with seeing, slit width and pixel binning
- Comparison to V and σ profiles

Massive Galaxies over Cosmic Time II

log (R[arcsec]

Nov 1, 2006

Lucy deconvolution +

to fit photometry

Tucson, AZ

Data-Model Comparison

- Kinematical profiles
 - Pixel size 0.215"
 - Extent ~0.7" (4.3 kpc)
- Modeling spatial resolution essential
 - Seeing 0.7"-0.9"
 - Slit width 1.1"
- Acceptable fits
- Model parameters
 - M/L_B
 - k [similar to $(V/\sigma)^*$]

Massive Galaxies over Cosmic Time II

Cross-correlation + Gaussian LOSVD fitting

Rotation Properties

- Most luminous galaxies at z=0.5 rotate too slowly to account for their flattening
- Consistent with rotation properties of local ellipticals

Massive Galaxies over Cosmic Time II

Tucson, AZ

Kinematical Identification S0 galaxies?

- More rapidly rotating galaxies among visually classified ellipticals at z=0.5 than z=0
- Probably more misclassified S0s at z=0.5
- Only raises the S0 fraction of the three target clusters mildly $(16\% \Rightarrow 22\%)$
- Insufficient to explain strong S0 evolution from z=0.5 to present

Massive Galaxies over Cosmic Time II

Nov 1, 2006

Tucson, AZ

M/L in the Local Universe

- Detailed dynamical modeling of large samples
 - vdM (1991), Magorrian et al. (1998), Kronawitter et al. (2000), Gebhardt et al. (2003)
 - Found that M/L correlates with L or M
 - Cappellari et al. (2006)
 - Found that M/L correlates even more tightly with $\boldsymbol{\sigma}$
- New homogenized compilation of these model results
 - Transformed to B-band M/L
 - Individual distances from SBF method (Tonry et al. 2001)
- Result
 - $\log(M/L)_B = (0.896 \pm 0.010) + (0.992 \pm 0.054) \log(\sigma_{eff}/200 \text{ km/s})$
 - Slope steeper than in I-band (0.82 \pm 0.06, Cappellari et al.)

Massive Galaxies over Cosmic Time II

Tucson, AZ

Local Results: Modeling Comparison

- Excellent agreement between different studies
- Systematic modeling errors small

Massive Galaxies over Cosmic Time II

Tucson, AZ

Evolution of the M/L – sigma relation

• $d \log (M/L_B) / dz = -0.529 \pm 0.049 (random) \pm 0.071 (sys)$

• Consistent with FP zeropoint evolution (for M $> 10^{11} M_{\odot}$)

Massive Galaxies over Cosmic Time II

Tucson, AZ

Nov 1, 2006 12

Dependence on σ (or Mass)

- FP: more evolution for galaxies of low σ
 - FP slope becomes steeper with redshift
 - Also seen in many other samples
 - Usually interpreted as difference in age
- M/L vs. σ relation: evolution independent of σ
 - Slope same at z=0.5 as z=0
 - No difference in age implied

Nov 1, 2006

Tucson, AZ

Methodological Differences

- Why do FP evolution and M/L- σ evolution differ for low-σ galaxies?
 - Other quantities than M/L may be evolving (R, I, σ, structure, ...)
 [relations not parallel!] (+)
 - Rotation may be important: affects M/L but not FP [aperture corrections?] (?)
 - Dynamical models may suffer from limited resolution [systematically errors?] (–)

Massive Galaxies over Cosmic Time II

Conclusions - Distant Elliptical Galaxies

- To lowest order: FP evolution = M/L evolution
 - z(form, M > 10^{11} M_{\odot}, cluster) = 2.0 ± 0.2 ("standard" IMF)
 - field Galaxies: younger by 4.1 \pm 2.0% (~0.4 Gyr)
- When considered more carefully, many subtle effects come into play
 - Quantities other than M/L may be evolving
 - Rotation may be relevant
- Steepening of FP tilt with redshift does not necessarily imply that low-mass galaxies are younger

Tucson, AZ

Conclusions – What's next

- Good reasons to move beyond global properties
- Available data and tools allow detailed modeling of internal dynamical structure
- Extend similar analyses to different samples
- Study combined M/L and color evolution
- JWST/NIRSpec will further revolutionize this field

Massive Galaxies over Cosmic Time II

Tucson, AZ