

Mike Boylan-Kolchin UC Berkeley

Mon. Not. Roy. Astron. Soc. 2005, 2006 astro-ph/0502495, 0601400

Massive Galaxies Over Cosmic Time 2

How important are gas-poor mergers for building massive elliptical galaxies?

- Expected in current galaxy formation models embedded in LCDM simulations
- Help explain dichotomy between bright and faint ellipticals
- Have been observed
- Tension with evolution of galaxy luminosity functions?
- Consistency with tight observed scaling relations?

Merger Simulations

- Model elliptical galaxy as Hernquist stellar bulge + NFW dark matter halo w/ and w/o adiabatic contraction) - no black holes, no gas important: △Ep≠0
- Simulate mass ratios of 1:1, 1:3
- Use distribution of orbits seen in cosmological dark matter simulations
- over 10⁶ particles per simulation;
 run using GADGET

Fundamental Plane

Virial Theorem:

 $R \propto \sigma^{-2} M_{dyn}$ $R \propto \sigma^{-2} (M_{dyn}/L) L$

Fundamental Plane

K-band FP:

 $R_e \propto \sigma^{1.53 \pm 0.08} I_e^{-0.79 \pm 0.03}$

(Pahre et al. 1998)

 $M_{dyn}/L \propto R_e^{0.21}$ Tilt due to increasing dark matter fraction in with increasing R_e

See also Capelato et al. 1995, Nipoti et al. 2003, Robertson et al. 2006

M_{P} - σ and R_{e} - M_{P} relations

MBK, Ma, & Quataert (MNRAS, 2006)

Angular momentum

Full elliptical galaxy population:

 $L \propto \sigma^4$

 $R_{\rm e} \propto L^{0.6-0.7}$

Brightest Cluster Galaxies

- Clusters form at intersections of filaments ⇒ natural preferred direction for merging
- ⇒If BCGs are assembled by dissipationless mergers during cluster formation, orbits should be preferentially radial.
- \Rightarrow This radial merging will preserve the fundamental plane but lead to deviations in $M_{\rho} \propto \sigma^{\beta}$ and $R \propto M_{\rho}^{\alpha}$:

$$\beta > 4, \, \alpha > 0.6$$

What About Black Holes?

Dry assembly of BCGs / massive ellipticals:
 BH growth comes from mergers

Dry merger predictions for BCGs:

- Black hole mass traces galaxy stellar mass: M_{BH}∝M_P
- Different M_{ρ} - σ relation: $M_{\rho} \propto \sigma^{\beta}$ with $\beta > 4$
- \Rightarrow M_{BH}- σ^{β} relation changes to $\beta>4$

(see also Lauer et al. 2006, Bernardi et al. 2006)

Conclusions

- The fundamental plane is preserved by dry merging under a variety of orbital configurations and mass ratios
- The FP projections do show dependence on merger orbit, a result of dynamical friction energy loss
- Radial merging along filaments is a well-motivated mechanism for producing BCGs; should lead to BCGs following different FP projections from normal ellipticals (now observed)
- · Change in L- σ relation for massive galaxies means using standard black hole mass predictor ($M_{BH} \propto \sigma^4$) may underestimate black hole masses: BCGs could host black holes of >10¹⁰ M_{sun}

Fundamental Plane Projections

MBK, Ma, & Quataert (MNRAS, 2006)

Angular momentum

observed:

 $\begin{array}{c} M \propto \sigma^4 \\ R_e \propto L^{0.6 \text{-} 0.7} \end{array}$

⇒ scaling relations depend on energy and angular momentum of orbit

Predictions

- Dry mergers will preserve the fundamental plane
- If the mergers are on typical orbits (significant angular momentum), they will also preserve projections of the FP
- More radial mergers will lead to deviations in projections of the FP

Q: when (if ever) are low angular momentum mergers expected?

B. Moore

1.0 Log10 Ro,r [h-1 kpc] -0.1 0.0 0.1 Orthogonal & FP 0.0 1.8 2.8 3.0 2.6 $Log_{10} \sigma + 0.19(\mu_r - 19.69)$

R vs. L

Bernardi et al. 2006; also Lauer et al. 2006

---- Fundamental Plane

Deviations also seen for other massive ellipticals (Desroches, Quataert, Ma, and West 2006)

Constraints on Galaxy Assembly

fundamental plane connects ellipticals' half-light radii (R_e), luminosities (L), and velocity dispersions (σ): (Djorgovski & Davis 1987, Dressler et al. 1987)

$$R_e \propto \sigma^{1.53 \pm 0.08} I_e^{-0.79 \pm 0.03} \implies R_e \propto \sigma^{-3} L^{3/2}$$

Pahre et al. 1998 (K-band)

virial theorem connects R, σ , and M

$$R \propto \sigma^{-2} M \Rightarrow R \propto \sigma^{-2} (M/L) L$$

$$\Rightarrow$$
 require (M/L) \propto L^{1/2} σ ⁻¹ or (tilt)

Locations in : $L \propto \sigma^4$ (Faber-Jackson), $R \propto L^{0.7}$ contain more information than plane itself

Future Work

- Reproducing scaling relations is only one piece of the puzzle: need to understand if dry merging works in other ways too
- Need to embed merger simulations into cosmological environment: multiple mergers, realistic merging sequence
- Make predictions for black hole mass function and its evolution - implications for galaxy formation at higher redshifts?
- Observations: measure more black hole masses in BIG galaxies (using adaptive optics) to get better statistics

Example: Virgo Cluster / M87

- · Virgo / M87
 - $-M_{\text{p}}$ ≈6 x 10¹¹ M_{sun}
 - $-\sigma_{\rm M87} \approx 340 \; {\rm km} \; {\rm s}^{-1}$
 - $M_{BH} = 3.0 \times 10^9 M_{sun}$
- Massive clusters:
 - $-\overline{M_{P, BCG}} \approx 1-3 \times 10^{12} M_{sun}$ (or more?)
 - maximum $\sigma \approx 400 \text{ km s}^{-1}$
 - gives:
 - $\cdot M_{BH} = 5.8 \times 10^9 M_{sun} \text{ (using M}_{BH} \cdot \sigma)$
 - $\cdot M_{BH} = 2 \times 10^{10} M_{sun} \text{ (using } M_{BH} M_{\odot} \text{)}$

Projections:

 $L \propto \sigma^4$ (Faber-Jackson) $R \propto L^{0.7}$

Projections carry more information than plane itself

SDSS: Bernardi et al. 2006

Fundamental Plane

Solid Line: Virial theorem prediction