Faint Science Array Concepts

- M. Karovska, T. Herbst, A. Glindemann, O. Guyon,
- G. Perrin, K. Olson, S. Ridgway

- Array Concepts
- Science
- Preparatory Work
- Recommendations

Array Concepts to Study

(Basically Fizeau imagers)

Linear Fizeau Array - 100-300 m

Pros: rapid filling of (u,v) plane

existing technology

Cons: boom flexure, etc.

20/20 Style

Pros: greater sensitivity (larger antennas)

Cons: longer to fill (u,v)

(changing baseline vs Earth-rotation synthesis)

Changing the Baseline...

← ca. 100 m →

Science

- faint compact sources (SNe, GRB, AGN cosmology)
- faint extended sources (AGN environments, high-z galaxies)
- crowded fields (stellar pops in Virgo, stellar dynamics near BH)

NOTE: Fizeau imagers are general astrophysics tools

- true panoramic imagery (limited by AO)
- complex sources (phase for free)
- lots of bright(er) science

Interferometry Science Phase Space

Fizeau complex imagery general astrophysics WF astrometry wider field of view _ Michelson high resolution / simple morphology precision astrometry

better angular resolution -----

Preparatory Work

- FRINGE TRACKING!
 - high performance fringe trackers
 - zero noise detectors (NIR)
 - novel approaches (i.e. signal co-addition, lasers)
- AO strategies to increase iso-patches + access shorter lambda
 - increase sky coverage for FT stars
 - i.e. MCAO (+on-axis beacon?)
- Gigapixel science arrays
 - ref: Hawaii2 = 2.5 arcsec field for 100 meters
- Transfer optics
 - large field ==> large angles ==> large optics
- Large structures, stability, active control
 - Mechanical Fizeau condition ~10 microns

Recommendations

- study / trade off Linear Fizeau Array versus 20/20 Type
- do preparatory work
- trade off linear array size, Ntel, spacing, non-redundant outriggers? core of Bright Array? (like ACA)
- study smart focal planes (deployable cameras / IFUs)
- image reconstruction techniques