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The VLT Interterometer
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Optical / Infrared Interferometry
Today

e Access to milliarcsecond-scale phenomena

e Perform interferometric spectroscopy
e Lots of results 1n stellar astrophysics
e Sensitivity sufficient for a few bright AGN

Small number of telescopes = parametric
model fits to visibilities, no i1mages

Sensitivity msufficient for larger samples

Resolution insufficient for details / more distant
objects
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Desirable Capabilities of a Next-
Generation Interferometer

e Address wide range of scientific topics =
flexibility

e Observe faint objects = high sensitivity and
dynamic range

e Complex objects / limited prior knowledge =
Imaging capability

e Access “famous” archetypical and rare objects
— good sky coverage

e Observe time-variable phenomena = good
snap-shot capability
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What’s Next?
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What’s Next?
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Think BIG!
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The ELSA Concept — a Strawman
Interferometric Facility

e Number of telescopes: 27

e Telescope diameter: 8 m

e Maximum baseline: 10 km

e Wavelength range: 500 nm ... 20 um (?)

e Beam transport: Single-mode fiber bundles
e Becam combination: Michelson

e Sky coverage at 600 nm: 2 10%

e Cost: ~ 400 M€
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ELSA Astrometry

e Astrometric error due to Kolmogorov
atmosphere scales with B>

e ELSA could reach 1 pas over 15" arc

 Sufficient to detect terrestrial planets around nearby
stars

e Even better precision expected due to outer
scale of atmospheric turbulence

e Precision requirements less stringent than for
Keck / VLTI
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ELSA Resolution: 10 pas at
500 nm, 40 pas at 2 um

e 15,000 km at 10 pc

8 pixels across Jupiter-size object

80 pixels across Solar-type star

e 0.1 AU at 10 kpc

* GR effects on stars very close to the Galactic Center

e 200 AU (1 light-day) at 20 Mpc
e Images of AGN Broad-line regions

* Expansion and light echoes of supernovae
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Linear Resolution of ELSA 1n the
[Local Universe
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Linear Resolution of ELSA at
A =500 nm
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ELSA Science Case (Galactic)

® Weather on brown dwarfs

e Stellar surface 1images (spots, flares, convection,
differential rotation, oscillations, ...)

e Images of interacting and accreting binaries

e Gaps and inner edge of YSO disks, jet formation
e Cores of globular clusters

e AGRB stars: dust formation, winds

e Movies of novae

e Gravitational micro-lenses

e General relativity near Galactic Center
Tucson 11/14/2006 Andreas Quirrenbach

13



ELSA Science Case
(Extragalactic)

e Stellar populations 1n external galaxies

* Crowding important even on ELT scale
e Expansion and light echoes of supernovae

e Imaging of Active Galactic Nuclel
e Dynamics of broad line regions

e Jet formation

* Black hole masses from stellar orbits

e Resolving gamma-ray afterglows

« Asymmetries, relativistic beaming
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AGN Science with ELSA

e Black-hole mass from stellar and gas dynamics

e Reverberation mapping (watch line response to
continuum variations 1n movies) = physics of
BLR, geometric distances

e Optical emission from milliarcsecond jets =
jet collimation, shocks, particle acceleration, ...

e Details of clumpy (?) obscuring torus = dust
properties, unification schemes

e “Mirror(s)” in HBLR objects = AGN physics,
unification schemes
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ELSA Critical Technologies

e Telescopes

e Array co-phasing
e Beam transport

e Beam combination

e Delay compensation
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ELSA Co-Phasing Concept

e Phase individual telescopes with multiple (?) LGS
adaptive optics
e Off-axis fringe tracking on “bright” star

e Large aperture = good fringe tracking sensitivity =
near-complete sky coverage

e Requirement: fringe tracking at K~19
* One of the drivers for large array elements

e Fringe-tracking chain of neighboring telescopes for
bright (resolved) stars

e Fringe tracking between all telescopes for faint
(unresolved) stars
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Limiting Sensitivity for Fringe
Tracking in the R Band
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Sky Coverage at NGP for Ditferent g
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Array Layout Optimized for

Baseline Bootstrapping
S
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ELSA Telescopes

e Need to produce twenty-seven 8m telescopes
for = 200 M€

e Moveable for array reconfiguration 1f possible
e Small ficld-of-view

e No scientific instruments (acquisition and fiber-
feeds only)

e Take advantage of ELT development
* Mass production of mirror segments

e Standardized structural elements
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Projected Cost of Telescopes

e Typical scaling of telescope cost with diameter
is € oc D7

e Scaling applies at any given time (for similar
maturity of technology), not to future projection

e Example: scaling holds for Keck (10m) versus
CHARA (1m) telescopes

e Apply scaling to ELT (e.g., European E-ELT
concept): 42m for 700 M€ = 8m for 8 M€

e Proof-of-concept for ELT?
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... 1s Perfectly Doable!
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ELSA Beam Transport

e Fibers are much cheaper than beam tunnels

* Diffraction + field = D_ = kx~AL + m6L

e Need advances 1n fiber technology
» No significant light loss over 10 km
* Low dispersion, polarization preserving
 Fibers for infrared wavelength range

e Need metrology to monitor fiber lengths

e Fiber bundles can handle field-of-view larger
than Airy disk
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ELSA Delay Compensation

e Switch between fiber segments for bulk delay
compensation

» Add appropriate fibers from set of (1m, 2m, 4m, ...)
» Dispersion 1s a potential show-stopper
* Need low-loss fiber-fiber couplers

e Fiber stretching for fine adjustment (sidereal
rate plus atmosphere)

 Fall-back is short classical delay line
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ELSA Beam Combination

e Very diluted (B / D = 1,000) for longest
baselines = pupil plane combination preferred

e Field-of-view radius is R = A / A resolution
elements

e Larger field-of-view desired for more compact
configurations

* Homothetic mapping (exact or densified replica of
entrance pupil) to be explored
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ELSA Site
e Need flat = 10 km plateau

e Good seeing (r, 7,, 6,) Important criterion

e Southern hemisphere preferred
e Requirements different from ELT criteria
e ALMA site probably (marginally) ok
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Exceptional Astronomical Seeing
at Dome C 1n Antarctica (?)
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Potential Advantages of Dome C

Larger r, = simpler adaptive optics
Longer 7, = better sensitivity
Larger 6, = better sky coverage

Lower temperature = lower IR background
e Or same performance with smaller telescopes

e 2m at Dome C < 8m at traditional sites?
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VLTI, ALMA, ELTs, and
ELSA

e ELSA has 50 times better resolution than any
other facility = completely new science

e ELSA draws on VLTI / ALMA / ELT heritage

* VLTI: Interferometric techniques, beam
combination, ...

« ALMA: Moveable telescopes, site (?)

 ELTs: Cheap telescopes through mass production of
optics and standardized structural elements

e EL.SA could be feasible and affordable in 2015
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Conclusions (1): What we Know
Already

e There 1s a large parameter space of first-class
science beyond the ELT resolution limait

e Baseline length of =10 km required

e Large telescopes or superb site (Antarctica?)
needed to get sensitivity and good sky coverage

e A powertful facility could become feasible and
affordable 1n a decade
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Conclusions (2): What we Don’t
Know Yet

e Can fibers be used for beam transport and delay
compensation?

e Which site offers the best trade-off between
quality and cost?

e Is the science case powerful enough to make it
happen?
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Key Technology Needs for
Roadmap

e Beam transport with optical fibers
» Dispersion 1s a potential show stopper
* Costdriver = top priority on my list

e Beam combination concepts and integrated
optics beam combiners

e Telescopes

e Main issue 1s cost = link to ELT projects
e Site

e Evaluate Antarctica

* Look for good “traditional” sites
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