Future Directions for Interferometry: Young Stellar Objects

Josh Eisner UC Berkeley

on behalf of YSO Working Group

The Questions

- Big Picture: Origins
 - how do stars and planets form?
 - how did our system form? and is this mode of formation common?
 - how many exo-systems hospitable to life?

Star Formation

- Disks form during collapse of cloud to star
 - accretion through disk onto star

- envelope/halo contributions
 - infall signatures

- Jets
 - resolve launching region

Initial Conditions for Planets

- Planets form in disks: how and when?
 - distribution, amount, chemistry, temperature of dust & gas in protostars, TTs, HAEBEs

- disk structure from 10⁵ to 10⁷ yr
 - how do solids evolve?
 - what happens to gas?

Planetary Signposts

- Protoplanet blobs, gaps, variability in TTs
 - test when planets form, how they accrete, whether they migrate

- "Mature" planets in "transition"/debris disks
 - provide link between YSOs and RV planets

- Planets around MS stars
 - astrometry, differential phase

The Challenge

- Disks are small
- nearest star forming regions at I 00+ pc
 - I AU < 10 mas

- Available resolution
 - $\theta_{\rm HST}$ ~ 100 mas
 - θ_{KeckAO} ~ 50 mas
 - θ_{TMT} ~ 20 mas

Wanted: Spatial resolution

- Interferometry constrains geometry
- Visibilities + fluxes (e.g., SEDs) give temperature structure, dust grain properties of star+disk systems
 - spectroscopic veiling very useful
 - SEDs alone cannot distinguish geometry, T, dust properties

Lots of Progress

- Disks from ~I-100 Myr
 - size scales & geometries
 - temperature profiles
 - dust properties
 - gas: outflows
 - envelopes

Inner Disk Radii

Adapted from Millan-Gabet et al. PPV Review

T(R) for a T Tauri Star: Keck-I Grism Data

- First Light obs.
 May 15-16, 2006
- 2.0-2.4 μm
- $\lambda/\Delta\lambda$ ~ 230
- model: $T(R) \sim R^{-\alpha}$ $\alpha \approx 0.5 \pm 0.05$

Dust Evolution

van Boekel et al. 2004 VLTI MIDI

Gas Infall/Outflow

- Bry spatially,spectrally resolved
 - outflow (Malbet et al. 2005)
 - disk? see Tatulli et al. 2006
 - no infall signatures yet...

Resolving Transition Disks

- if no circumstellar dust, V²=I (central star unresolved)
- KI obs: $V^2 < I$ (at 2 μ m)
 - Disk models with small dust grains
 - β =1 (or >1): submicron-sized dust
 - $R_{in} = 0.06 \text{ AU}, T_{in} = 1100 \text{ K}$

Eisner, Chiang, & Hillenbrand 2006

Debris Disks

Constrain excess in inner regions

Implications for particle sizes

Absil et al. 2006: Vega

Small & Large Scales

synergy with ALMA

disk/envelope contributions

Millan-Gabet et al. 2006

Going Forward

- Investigate detailed disk structure
 - imaging, spectroscopy, polarization

- Accretion and Outflow
 - need spectroscopy; imaging helpful

- detect gaps, planets, other indicators
 - high dynamic range, long baselines

Imaging

 Lots of baselines allow imaging (see aperture masking results!)

 test complex structures, including asymmetries

Kinematics

preliminary results from VLTI

want other tracers (disk, infall)

 resolved line profiles of multiple transitions trace infall, rotation, surface density, etc.

Carr, Tokunaga, & Najita 2004

Planetary Signatures

- gaps and protoplanets
 - need long baselines to resolve; difficult for TMT-type instruments
 - probably need amplitude & phase to measure protoplanets
 - nulling useful
 - variability on expected planet t_{dyn}?
 - astrometric wobble/DP: planet M, i

Gap Detection

Toy Models

What do we need to detect these features?

Dense Interferometer

 Few rotating baselines (space) or many-element ground-based

Images courtesy of Jayadev Rajagopal

Comparison to ELT/ALMA

- Planets at larger radii more easily accessible with ALMA
 - at 5 AU, T~100 K; λ_{max} ~30 μ m

 Scattered light images with ELTs can also find gaps/ planets at >AU radii

Gaps/Holes

- "Transition objects" found by Spitzer
 - apparent inner clearings: planets?
 - evolutionary stage: gas dispersed?

Planetesimals

Low-mass giant planet

High-mass giant planet

images courtesy of Joan Najita

Gaps/Holes & Gas

Spatial distribution of gas can diagnose evolutionary stage

Gas within Rhole

Gas within R_{inner}

No gas within Rhole

Instrument Questions

- What resolution do we need?
 - e.g., for gaps, > 100m baselines required

- What uv coverage do we need?
 - dynamic range for planet detection
 - complex geometries...

- What sensitivity do we need?
 - dictates aperture size and/or sky coverage

Spatial Resolution

- I AU at Taurus: ~10 mas at 2 μ m
 - ~100m baselines to resolve inner disk

- gap widths for M_J planet ~ 0.03 AU
 - >300m baselines to resolve gaps

- astrometry
 - $\sigma \sim \lambda/B$: longer baselines better

Spectral Resolution

- Disk Keplerian speeds ~1-10 km/s (similar for jets/infall)
 - want R~2000-20000 to resolve lines

- Dust/PAH features
 - R~1000 sufficient?

uv coverage

- Basic imaging
 - closure relations: 3-4 tels
 - more phase info w/ more tels

- High dyamic Range
 - Old disks: F_{disk}/F* < 0.01
 - Planets: $F_{planet}/F_* < 10^{-3}$
 - need >10 elements

- Size scales: 0.01 10 AU
 - sparse or filled array?

Tuthill & Monnier 2000

Field of View

- large scales at high resolution
- Astrometry

Sensitivity

 hundreds of YSOs brighter than K~II; but often very red, V~I5

- current limits- KI: K~I0,V~I2;VLTI:K~3,V~I2 (?)
 - worse for smaller apertures
 - longer integrations (better sites) and/or phase referencing buys
 K sensitivity
 - LGS-AO or IR-AO is essential for YSO studies!

Prioritized Requirements?

- sub-mas resolution
 - unique capability of interferometers

- imaging
 - good dynamic range (>10³ for planets)
 - nulling, espcially for more evolved systems where F*/F_{disk}>100
- spectroscopy (and sensitivity)
 - $v_{gas} \sim 1-100 \text{ km/s}$: $R \sim 1000-10000$

near to mid-IR: range of disk radii & processes