SOFTWARE, ARCHIVES AND NVO

David De Young NOAO

OIR System - Alexandria 0504

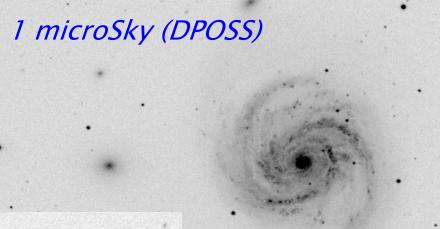
The Data Avalanche

- Current Holdings:
 - ~ 20 Collections in Excess of 1 TB Each
 - 2MASS, Chandra, DENIS, DPOSS, DSS I&II, GSC II, HST, LONEOS, LOTIS, MACHO, Mosaic N., NEAT, NOAO Surveys, NVSS, OGLE II, SDSS (early), SUMSS, VLA, VLBA
 - Plus Many Other Smaller Collections
 - Ground Based Surveys: ~ 50 TB

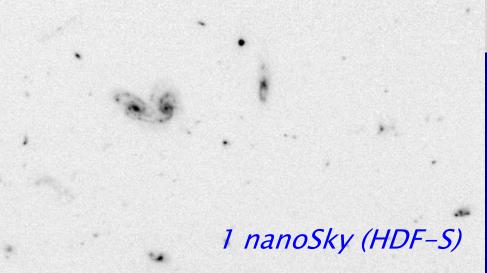
The Data Avalanche

• Some Comparisons:

Ground Based Surveys: ~ 50 TB; Current Total
 > 100 TB and Growing


• Human Genome: < 1 GB

Library of Congress: ~ 20 TB



OIR System - Alexandria 0504

The Data Avalanche: The Future

Multi-Terabyte (soon: multi-Petabyte) sky surveys and archives over a broad range of wavelengths

Billions of detected sources, hundreds of measured attributes per source

OIR System - Alexandria 0504

The Data Avalanche

- The Future:
 - SDSS Final (~ 20 TB)
 - Future Missions and Facilities (GALEX, Spitzer, GSMT, ...)
 - LSST
 - ~ 6 TeraPixels/ Night (~ 2MASS)
 - Total Data Archive in Petabyte Range
 - Largest Projected Single Contributor of Data

The Data Avalanche

- The Future:
 - Digital Libraries:
 - ADS, astro-ph, NED, CDS, NSSDC
 - (ADS Already at ~ 400 GB)
 - ~ 1 TB/Sky/Band/Epoch (1 Arcsec Pixels; 1 Byte per Pixel)

Archived Data

- Can Provide New Science
 - New Ideas
 - Statistical Revelations
 - Multi-Wavelength Synthesis
 - Time Domain Analysis
- Can Be a Unique Educational Resource
- Can Enhance Public Education/Outreach

Archived Data

- Is Essentially Useless Unless:
 - It Is Easily Accessible
 - Meta Data, Standards
 - Protocols, Bandwidth
 - Simplicity of Procedures
 - Many Useful Tools Are
 - Readily Available to All
 - Simple to Use

The Solution...

- The Virtual Observatory
 - "Single Point" User Access to Multiple Datasets
 - Standardized Formats for Metadata and Access Protocols
 - Provision of Tools for Retrieval and Analysis
 - Provision of High Bandwidth and Grid Computing
 - National (NVO) and International Initiative

The US NVO: History

- 1990s: NASA establishes science archive centers
- Apr 1999: Decadal Survey Panel on Theory, Computation, and Data Discovery (LANL)
 - Szalay, Prince, and Alcock coin the name "National Virtual Observatory"
- Nov 1999: NVO organizational workshop at JHU
- Feb 2002: 2nd NVO workshop NOAO-Tucson
- Jun 2000: 1st NVO Conference Caltech

The US NVO: History

• National Academy of Sciences Decadal Survey:

"Several small initiatives recommended by the committee span both ground and space. The first among them—the National Virtual Observatory (NVO)—is the committee's top priority among the small initiatives."

—Astronomy and Astrophysics in the New Millennium, p. 14

The US NVO: History

- April 2001: Proposal Submitted to NSF ITR Program- 17 Collaborating Organizations
- September 2001: NSF Announces Proposal Selection - \$10 M Award
- January 2003: First NVO Science Prototypes Shown at Seattle AAS

What the Virtual Observatory Is...

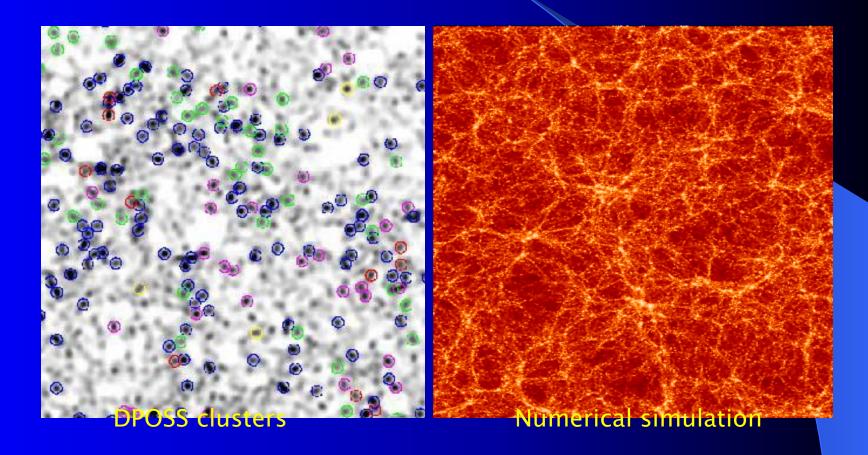
- A suite of international standards for discovery, exchange, and analysis of data
- A data access and analysis environment that utilizes developments in ITR
- A framework for data processing that enables development and propagation of useful algorithms

What the Virtual Observatory Is...

- A tool for science planning: New missions, instruments, and experiments
- A catalyst for world-wide access to astronomical archives
- A routinely used tool of the research astronomer
- A vehicle for education and public outreach

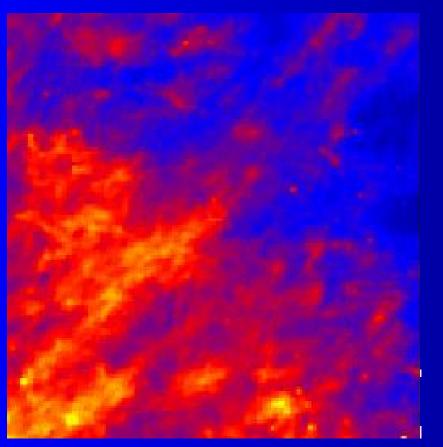
What the Virtual Observatory is *Not*...

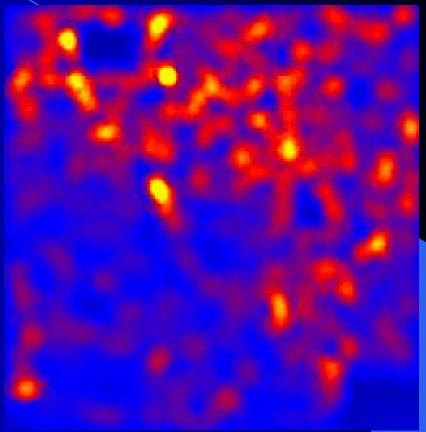
- A replacement for building new telescopes and instruments
- A centralized repository for data
- A data quality enforcement organization



Science of a Qualitatively Different Nature

- Statistical astronomy done right
 - Cosmology, Galactic structure, stellar astrophysics
 - Discovery of significant patterns and multivariate correlation
- Systematic exploration of the observable parameter spaces
 - Searches for rare or unknown types of objects and phenomena
 - Low surface brightness universe, the time domain
 - Confronting massive numerical simulations with massive data sets




Cosmology: A Marriage of Theory and Observations

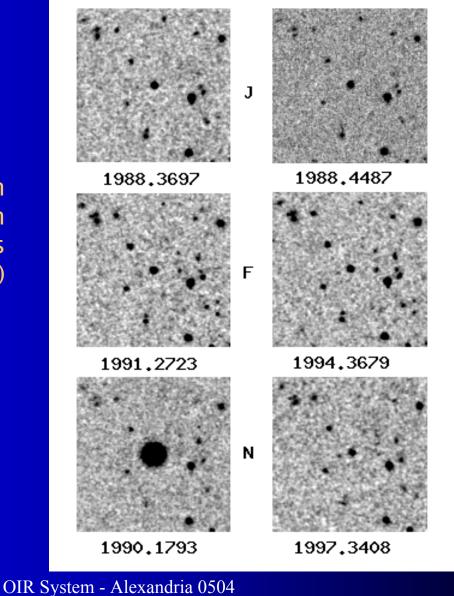
Multi-Wavelength Data paint a more complete (and more complex!) picture of the universe

Infrared emission from interstellar dust

Smoothed galaxy density map

OIR System - Alexandria 0504

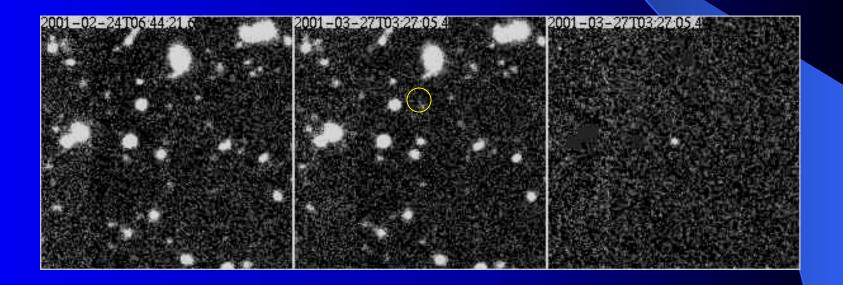
A Panchromatic Approach to the Universe...



...reveals a more complete physical picture

The resulting complexity of data translates into increased demands for data analysis, visualization, and understanding

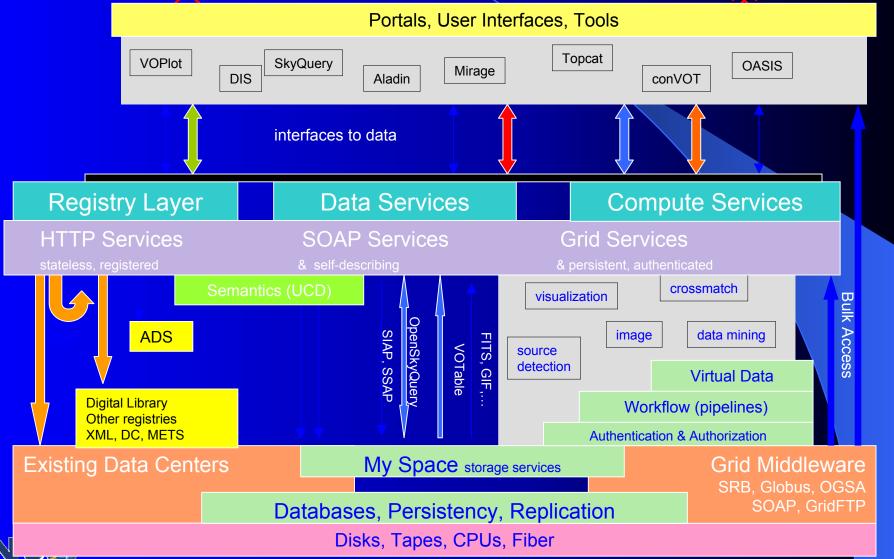
The Time Domain


Megaflares on normal main sequence stars (DPOSS)

20

The Time Domain

Faint, Fast Transients



NVO Architecture

Discover Compute Publish Collaborate

VOTable

- Reached international agreement on VOTable V1.0 specification in April 2002
- XML-based standard with in-line data or links to external data
- Utilized for basic catalog and image access protocols
- Merges "AstroRes" heritage with XML flexibility
- Complements FITS
- Multiple I/O libraries available (Java, Perl, C++, C#)

Data Models

- Data modeling effort aimed at defining basic data types and relationships among them
- High-level entities: image, spectrum, time series, catalog
- Low-level entries: quantity, resolution, time of observation
- Interfaces and protocols for other VO services derived from DM relationships

Data Access Layer

- Data Access Layer is mediator between NVO data requests and data delivery
- Defined "Cone Search" protocol and have ~100 implementations
- Defined Simple Image Access Protocol (SIAP) and have 20+ implementations
- Specification for Simple Spectral Access Protocol in development

Metadata and Registry

- Metadata describes NVO data collections, services; Metadata is collected into a Registry
- Resource Identifiers are component of resource metadata; have agreed on syntax
- Using Open Archive Initiative protocols for metadata collection
- Now focusing on query mechanisms and general updating/synchronizing options
- Prototype registry utilized in science demonstration, Data Inventory Service

Unified Content Descriptors

- UCDs provide common data dictionary for describing contents of catalogs
- CDS initiative; now broadened to international VO discussion
- Current discussion focusing on structure and extensibility

Unified Content Descriptors

I/220 The HST Guide Star Catalog, Version 1.1 (Lasker+ 1992) Query this catalogue in VizieR

UCD	Associated to colum	With unit	Column description
CLASS_OBJECT	Class		[0,3] Class of object (0=star; 3=non-stellar)
CODE_MULT_FLAG	Mult		[TF] True if multiple object / False otherwise
DATA_LINK	Versions		Get parameters of that star from all GSC versions
ERROR	PosErr	arcsec	Mean error on position
ERROR	e_Pmag	mag	Mean error on photographic magnitude
ID_MAIN	GSC		GSC designation
ID_PLATE	Plate		Plate designation
NOTE	n_Pmag		[0,18] Coded passband for magnitude
PHOT_PHG_MAG	Pmag	mag	photographic magnitude (see n_Pmag)
POS_EQ_DEC_MAIN	DEJ2000	deg	Declination in J2000, epoch of plate
POS_EQ_RA_MAIN	RAJ2000	deg	Right ascention in J2000, epoch of plate
TIME_EPOCH	Epoch	yr	Epoch of plate

VO Query Language

- Minimal extensions to SQL to support astronomical queries
- Defining standard query service based on SDSS SkyQuery: OpenSkyNode and OpenSkyQuery
- Investigating higher-level query languages; e.g., "natural" language

Grid and Web Services

- Increasing number of web services
- Registry services will be implemented as web services
- Prototyped use of Grid in galaxy morphology science demonstration
- Working closely with Grid community to understand progress on Grid services (e.g., OGSA) and to determine best time to adopt

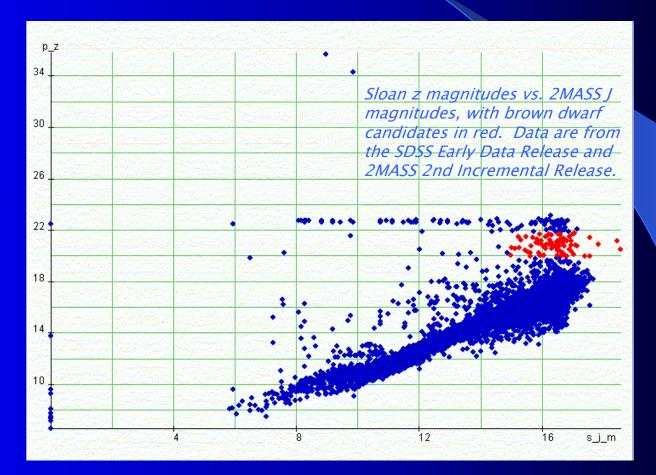
Science Prototypes

Goal: Guide and validate technical initiatives

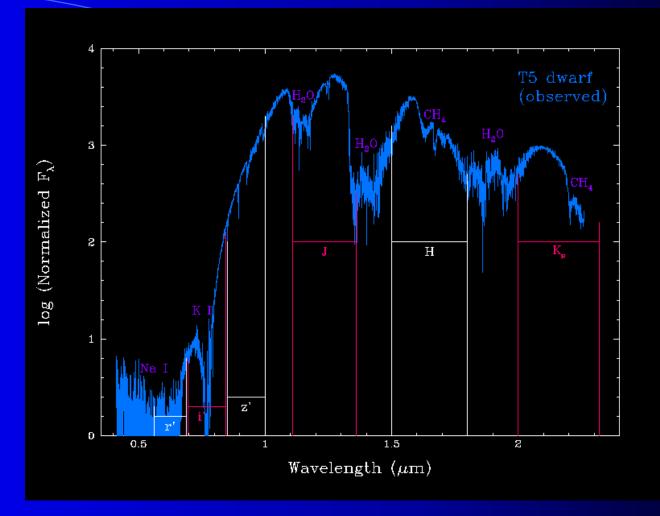
• Year 1

- Brown dwarf candidate search
- Gamma-ray burst follow-up
- Galaxy morphology measurement (utilizing computational grid)
- Year 1.5
 - Data Inventory Service

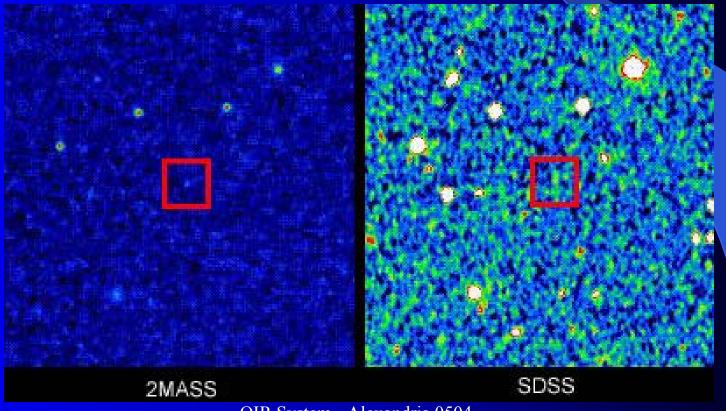
Science Prototypes


Goal: Guide and validate technical initiatives

• Year 2


- Interface theory simulations and observations
- European VO project
 - Type 2 (obscured) quasars: 40 new candidates found
 - Galactic star formation regions

Brown Dwarf Candidate Search



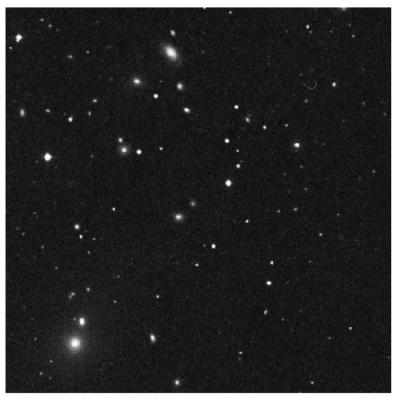
As a T dwarf becomes cooler (i.e., methane and water absorptions increase) or more distant...

- SDSS detects it only at z' band
- 2MASS defects it offly at 594 band

Demo Leads to Discovery! New brown dwarf candidate confirmed spectroscopically with Keck Observatory

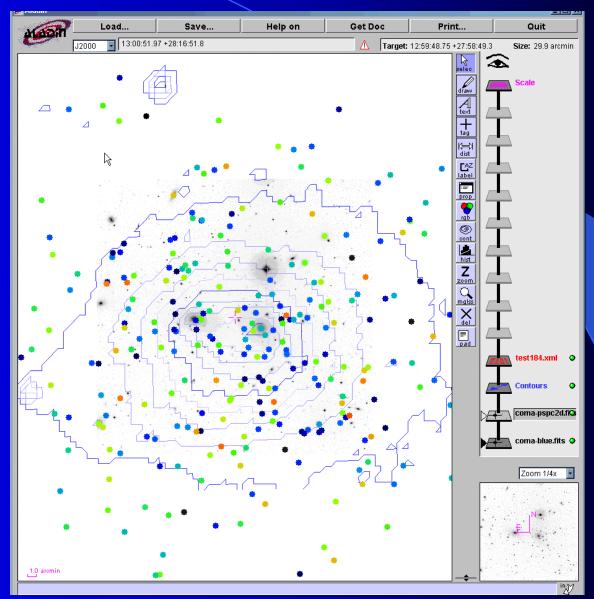
OIR System - Alexandria 0504

Galaxy Morphology in Clusters


Select a Cluster

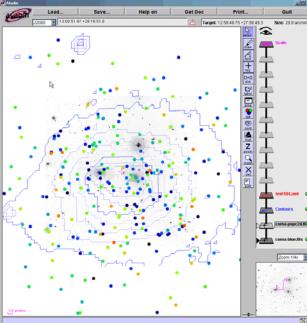
Cluster Name:	Abell 1367
Coordinates:	176.1858333, 19.6997222
Morph. Service:	Analyze Cluster on Grid
Results:	CACHED Results
Cluster Images:	<u>DSS FITS</u> <u>ROSAT FITS</u>
	<u>CHANDRA FITS</u>

When you select a cluster, the coordinates will be update and an optical image will appear.


Click the "Analyze" button to launch the Grid calculations. Check box to view previously computed results

Check out what's happening under the hood!

Galaxy Morphology in Clusters



Galaxy Morphology in

Scientific Motivation: Investigate the dynamical state of galaxy clusters and galaxy evolution whin the context of large-scale structure. Use State of by boost of dynamical history weak calculating, for each galaxy in a cluster USTEPS

• Surface brightness • Concentration index • Asymmetry index These parameters are analyzed with other indicators such as magnitude, color, peculiar elocity, position in cluster, and cluster large-scale structure.

Data Resources: Chandra X-ray image (SAO/CXC) ROSAT image (GSFC/HEASARC) DSS image (STScI/MAST) Galaxy cluster catalogs (NED) Computing Resource USC/ISI UW-Madison/NCSA Fermilab

What the VO Brings: Distributed data access and Grid-based computing make possible for the first time effective integration of multiple datasets and real-time computing. Integration of data from diverse sources is enabled by standardized data objects and standardized remote computing services. Flexibility of access means that further NVO-compliant images and catalogs can be added easily. Users can select their visualization portal (Aladin, OASIS, DS9).

Enabling Technologies: VOTable, NVO-compliant catalog and image access, standard semantics, Grid computing infrastructure.

Future Prospects: Dynamic discovery and selection of image, catalog, and computing resources. User-selection of analysis tools and ability to publish data to the NVO framework.

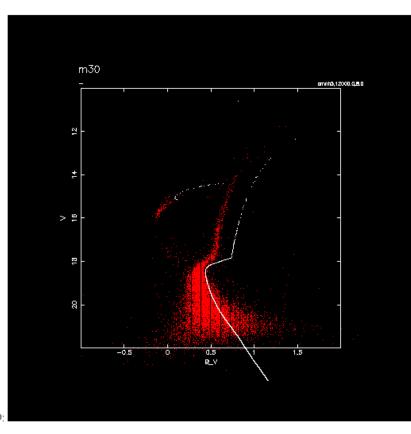
OIR System - Alexandria 0504

Globular Cluster Simulations

TVO demo AAS203 <u>Overview</u>
Action: Select CMD demo
 1. Choose a cluster: Image: Globular Cluster M30 @ 8.0 kpc: Image: Globular Cluster NGC 104 @ 4.5 kpc: Image: Globular Cluster NGC 6397 @ 2.3 kpc: Image: Globular Cluster M 67 @ 0.83 kpc
Override default distance (kpc):
 2. Choose a model: AMNH run3: N=100,000, 0% binaries, Z=0.001, small globular cluster with 40k left at 12Gyr AMNH run2: N=27,000 50% binaries, Z=0.02, rich open cluster dead at ~ 6Gyr GRAPE run2 GRAPE run3 Survey2: choose parameter selections from the appropriate popup menus below Test: for internal use; not for public consumption
Simulation Time (Myr): 12000.0 (Use a range 5000:7000 to select a timerange, or 'all' for all times)
3. Optional parameters for some of the models:
Survey2: King W: 3 • IMF slope: -2.35 • Binary fraction: 0.1 • N: 256 • Realization#: 0 •
Animate CMD? (can take 2-3 minutes) 🗖 debug
4. GO:
Start the simulation/Perform action Reset all values

Globular Cluster Simulations Survey2: King W: 3 MF slope: -2.35 Binary fraction: 0.1 N: 256 Realization#: 0.

□ Animate CMD? (can take 2-3 minutes) □ debug


4. GO:

Start the simulation/Perform action

Reset all values

Using cluster 'm30' at 8.0 kpc comparing to AMNH model 'amnh3' at time = 12000.0 Myr

(Working directory = http://bima.astro.umd.edu/nemo/tvo/nvodemo2004//tmp)

NVO Science Applications

The First Steps

OIR System - Alexandria 0504

Scientific Motivation: Rapid collection of multiwavelength imaging, catalog and observational data for any location on the sky. Very relevant for transient events.

Data Resources: Multi-wavelength data from several sites (currently 13) sampling energies from X-ray to radio; includes images, object lists, and catalogues.

Role of NVO: Integration and organization of a variety of data sources into an easily comprehensible information set. Scalability to an arbitrary number of data providers. Integrates data with multiple data visualization services.

.66.

Data Inventory Service

National Virtual Observatory: Hosted at the HEASARC

What do we know about regions of sky?

Using new Virtual Observatory protocols we can gather and organize information efficiently on a given region of sky.

Enter a position(or name) and the maximum size of the region of sky you're interested in.

 Object Position or Name:
 cen a
 (degrees or sexagesimal)

 Size:
 0.25
 (in decimal degrees)

 Send Request
 Reset Form

Ignore cache! The DIS will reproccess an identical request rather than linking to the existing cache results.

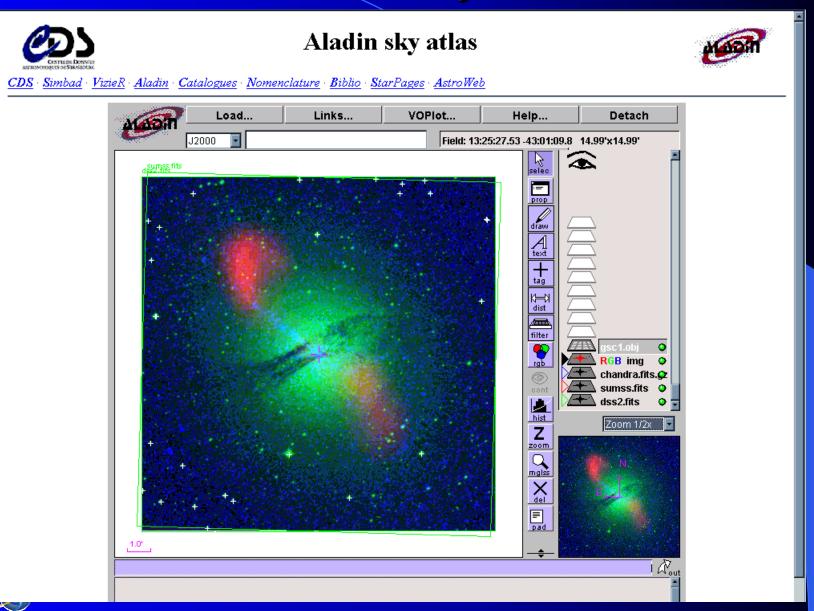
Example Inputs for the Object Position or Name

- 13.29, -18.47 [Object Position: Decimal degrees]
- 6 45 10.8, -16 41 58 [Object Position:Sexagesimal format; RA in hours]
- 3c273 [Object name]
- Use a comma to delimit J2000 RA and Dec pair.

About Data Inventory Service

- 1. A user request is broadcast to sites scattered all over the world using two simple common protocols.
- 2. Catalog data and lists of available images are returned using the new VOTable XML standard.
- 3. Image, observation and catalog data from these sites are collected and organized for immediate viewing.
- 4. Data may be analyzed or visualized in Aladin or OASIS

Participating sites currently include: NRAO, NOAO, JHU, ST Scl, HEASARC, NCS, IRSA, CDS, NED, ESO, SDSS, CXC.


	2	Data Inventory Results: cen a							
				Data missing - Instructions	Home				
National Virtual Observatory: Hosted at the HEASARC									
Note: Inventory request completed									
RA	Dec Size								
	-43 01 08.8 <mark>0.25</mark>								
Optical	nages (FITS/GIF) □DSS1SV	⊠ <u>DSS2</u>	DSS2B		DSS2R				
Infrared	□ <u>2MASS-H</u>	□ 2MASS-J	□ 2MASS-K		11 <u>0002R</u>				
Radio		<u></u>	<u></u>						
X-ray	□ RASS B	Chandra(6)							
	ervations (VOTable)								
Optical	□ <u>HST(100)</u>	□ <u>STIS(100)</u>	□ <u>WFPC2(100)</u>	□ <u>WFPC1(22)</u>	□ <u>HSTG(394)</u>				
Infrared	□ <u>NICMOS(100)</u>								
X-ray	□ <u>ASCA(3)</u>	□ <u>ROSAT(9)</u>	□ ROSPUBLC(10)	□ <u>RXTE(23)</u>	EXOSAT(12)				
O	CHANMAST(10)	□ <u>Einstein(5)</u>	□ <u>XMMMAST(3)</u>	□ <u>ASCAMAST(3)</u>	$\square XTEINDEX(5)$				
Gamma-ray UV	□ <u>OSSE(29)</u> □ <u>FUSE(1)</u>	□ <u>FOC(20)</u>	□ <u>HUT(2)</u>	□ <u>IUE(41)</u>					
0.	$\square \underline{POSE(1)}$	LI <u>FOC(20)</u>	LI <u>HOI(2)</u>	L1 <u>10C(41)</u>	L1 <u>011(7)</u>				
0	bjects (VOTable)								
Surveys	□ <u>USNO-A2.0(1197)</u>	□ <u>USNO-SA2.0(1197)</u>	⊠ <u>GSC1(289)</u>	□ <u>GSC2.2(2259)</u>	□ <u>UCAC1(305)</u>				
	□ <u>USNO-A2.0 CDS(999)</u>								
Galaxies	□ <u>SGC(1)</u>	□ <u>PGC(1)</u>	□ <u>NBG(1)</u>	□ <u>RC3(1)</u>	□ <u>RNGC(1)</u>				
	□ <u>PSCz(3)</u>								
Stars		□ <u>SAO(2)</u>	□ <u>WDS(1)</u>	□ <u>AC2000.2(30)</u>	□ <u>ASCC-2.5(21)</u>				
Mico			Dedia Catalana (CO)						
WISC.		ш <u>уудасат(35)</u>	LI Radio Catalogs(69)	Ш <u>ZMASS-MSC(UDS)(999)</u>	∟ <u>veron-veron(1)</u>				
Misc.	□ <u>HD(4)</u> □ <u>EGRET3(45)</u> □ <u>TYCHO-2(22)</u>	□ <u>₩GACAT(35)</u>		□ <u>2MASS-PSC(CDS)(999)</u>					

Event	Time		RA	Dec	: Size	Source			
141	2001-02-22 1	<mark>2:00:00</mark>	14 52 12.0	0 +43 01	01.6 0.25	Other			
Optica	1 🖂 🗋	SS(Blue	e) 🖸	DSS(Re	<u>d)</u>				
X–ray	<u>R</u>	ASS							
Radio	<u>N</u> 🛛	<u>IVSS</u>	~	WENSS	1	☑ <u>FIRST</u>		AT63402.fits	
			Observa	tions			File	e Archives Remote Layers Tools Display Fee	-
HST	<u>H</u> 🗹	IST(141))						
X–ray	<u> </u>	handra(<u>2)</u>						
			Obje	ts:					
Major	Catalogs 🗆 <u>N</u>	IED(25)		GSC2.2(<u>(294)</u>				
	□ <u>U</u>	ISNO A	<u>2(213)</u> □	2MASS	(P)(236)	\square <u>2MASS(X</u>)(2)	新学校会会の	
Cluste	rs 🖂 🖸	EDAG(<u>3)</u>						
Stars	□ <u>A</u>	C2000.2	<u>!(1)</u>						
Ana	alyze data in Aladin						1		
An	alyze data in OASIS	6							
Do	wnload selected dat	ta							
	Positions of F	IST and C	Chandra ol	oservation	os for GRB	010222		14h52m16s	
								ALC: NOT THE REAL	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

EQUJ 🔻 2000

▼ DEFAULT ▼ 14h 52m 01.40s +43d 01m 54.27s (null) Save

Enabling Technologies: Standard protocols to remote services such as Cone Search and Simple Image Access, standardized VOTables for data retrieval transformation, and standardized semantics encoded as Uniform Content Descriptors (UCDs). Resource registry.

Future Prospects: Customization and quality control of resources searched; more sophisticated use of metadata.

Positions of HST and Chandra observations for GRB010222

Spectrum Services for the Virtual Observatory

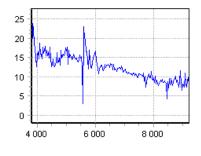
not logged in login | register

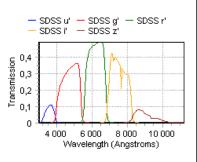
▶ home ▶ filters ▶ spectra ▶ webservices ▶ user

NVØ

Welcome to our web site dedicated to spectrum related VO services developed at the Johns Hopkins University. On these pages you will find tools and tutorials on how to access close to 500,000 spectra from the Sloan Digital Sky Survey (SDSS DR1) and the 2 degree Field redshift survey (2dFGRS). In addition to the spectra, these pages also publish the filter profiles of photometric pass bands of many surveys. The services are open to everyone to publish their own spectra in the same framework. Reading the tutorials on XML Web Services, you can learn how to integrate the 45 GB spectrum and passband database with your programs with few lines of code.

Spectrum catalog

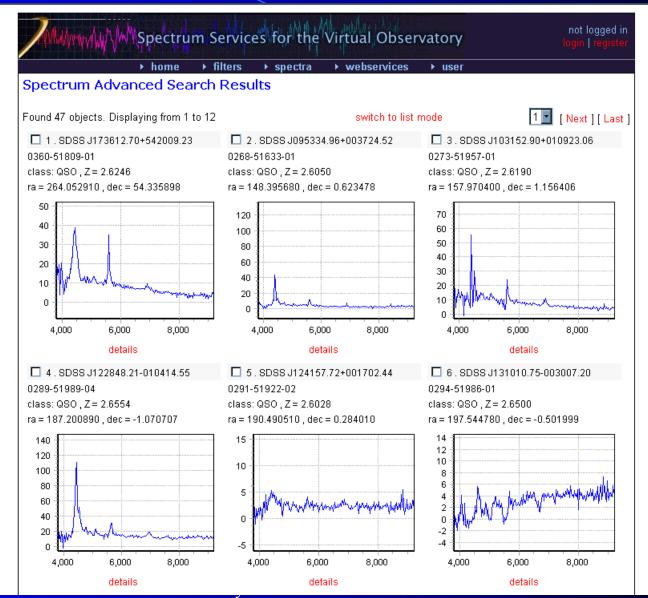

The spectrum catalog has a growing selection of spectra data from several surveys. It currently contains the complete SDSS DR1 and 2dFGRS spectrum catalog. The collection is expandable: you can add your own spectra using the web site or the web services.


The search tools include simple ones e.g. select a redshift range as well as more advanced ones, where the selection of spectra may be refined. Keeping with the VO standard ConeSearch, one can also select objects in a given virtual pointing allowing to find objects by their RA, Dec coordinates.

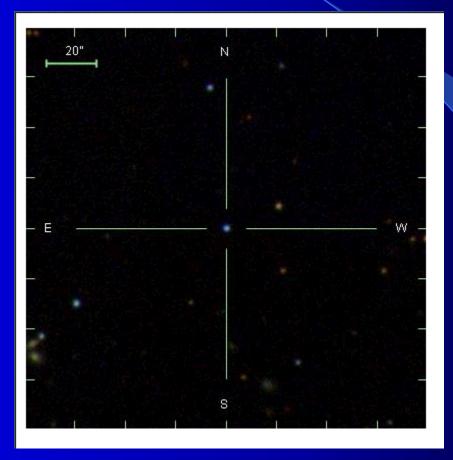
Filter Profile catalog

The passband database contains the profiles of almost 100 photometric filters of several instruments including the largest and most recent ones such as the SDSS, HST, etc. The list is easily also expandable, anyone can post additional filter profiles using a web form or automatically using a client program to the web services.

The filter profile catalog can be searched by keyword and by advanced query options including effective wavelength and UCD. The results may be overplotted on each other for easy comparison of photometric systems or between different versions. Give it a try now.



Spectrum Advanced Search	
Keyword:	
Name:	
Description:	
UCD:	
ra between: (deg) and and	
dec between: (deg) and and	
z between: 2.6 and 2.7	
z _{Err} between (absolute): and	
Object class: QSO	
Object class: QSO Survey: Any	
Measured between: and and	
Registered between: and	
Modified between: and	
Min. wavelength between: (A) and	
Max. wavelength between: (A) and	
Wavelength scale: Any	
Flux unit: Any	
Display format: O List O Graph	
Search	



Autoprover Aug Viela	Spectru	ım Service	es for the	Virtual Obser	vatory	not logged in login register
	▶ home	▶ filters	→ spectra	▶ webservices	→ user	
	Spectr	um Detail	S			
		Spectrum nar Description: UCD: ra = dec = z = z = z =	0 5 2 2	DSS J173612.70+542 360-51809-01 PECT_FLUX_VALUE 64.05291 4.335898 .62457 .000679108	009.23	
		Object class:	G)so		
		Wavelength s	cale: L	ogarithmic		
		Spectrum gra	ph:	50 45 40 33 30 25 25 25 25 40 30 25 25 40 40 40 5,000 5,000	3612.70+542009.23	
				Back Photo	of the object ASCII Get CSV	
	Plot a	graph				

NVO: Broader Context and Vision

International Virtual Observatory Alliance

Member Organizations

Hungarian Virtual Observatory

- A World-wide Coordination of VO Initiatives
 - Agreements on standards for data access
 - Coordination of development activities
 - Sharing of software, expertise
- 14 participating organizations:
 - Astrogrid, AVO, US-NVO, VO-Australia, VO-Canada, VO-China, VO-France, VO-Germany (GAVO), VO-Hungary, VO-India, VO-Italy (DRACO), VO-Japan, VO-Korea, VO-Russia

ivoa.net				/ IVOA.WebHome
	Edit Attach Ref'd By Prir	ntable More Advanced Search	Full Text 🖸 Topic Name O	Go
THIS WEB WebHome WebChanges WebTopicList WebStatistics ALL WEBS IVOA Know TWiki Test	Welcome TWikiGues This is the web-based co Alliance • User Registration • Notification Service • How TWiki works (TW	llaboration area of the Inter	mational Virtual Observato	ery
Tracking Trash IVOA.NET	Main topics: • Member Organizations • Events	InteroperabilityReports & Minutes	 Software Repository Forums 	
Members Technical docs TWiki basics TWiki tutorial User registration Notify me	Working Groups: • Resource Registry • Data Modeling	 Content Description (UCD) Data Access Layer 	VOTableVO Query Language	 Grid & Web Services Standards & Processes
OFFSITE LINKS W3C xml.com twiki.org	Interest Groups: • VO Architecture	VO Applications	• VO Theory	

OIR System - Alexandria 0504

- A World-wide Coordination of VO Initiatives
- Total Spending Levels:
 - > 7M/yr (US 2M/yr)
 - ~ \$30M over 5 Years (US \$10M)
- VO Initiative has Gained World-wide Momentum, and...
- The Train is Leaving the Station

VO and Future Large Facilities

- Software and data management are major components of future large facilities—VO infrastructure should help mitigate costs
- Maximum scientific return from future large facilities depends on ease of comparison with other data, availability of standard data products
- Education and outreach enabled by VO provides agencies, taxpayers with visible return on investment

The VO Vision

- The VO is the "semantic web" for astronomy (Tim Berners-Lee)
- The VO democratizes astronomical research
- The VO brings the universe to your desktop
 - The professional astronomer
 - Graduate students
 - Undergraduates
 - K-12
 - Amateurs
 - The public

OIR System - Alexandria 0504

