
Instrumentation: Enabling Science in the Ground-Based O/IR System

For: <u>The 2nd Community</u> <u>Workshop on the Ground-Based O/IR</u> <u>System</u>

Taft Armandroff (NOAO Gemini Science Center)

Elements of the Observing System

Instrumentation as Enabler of Science

- Instrumentation development can respond to scientific opportunities relatively rapidly
 - Lower cost than telescopes
 - Shorter duration projects than facilities
 - Can respond to technological developments relatively quickly
 - More institutions / groups capable of developing instruments than building telescopes
- Technological developments drive effectiveness gains in instrumentation
 - CCDs & IR arrays
 - Adaptive optics
 - Real-time computing power
 - Grating technology; diamond-turned optics fabrication Instrumentation in the O/IR System

3

Instrumentation with Impact

CCD Mosaic Imagers at 4m's (KPNO, CTIO, CFHT)	CCD Imaging over very wide field (1degree scale)	
HIRES at Keck	First high- resolution spectrograph @ 8-10m telescope	The Light Path of the High-Resolution Echelle Spectrograph 2b. Collimator 2b. Collimator 2b
DEIMOS & IMACS	Wide-field multi-object spectroscopy @ 8-10m telescope	

Instrumentation in the O/IR System

Which instrumentation should one build to benefit science?

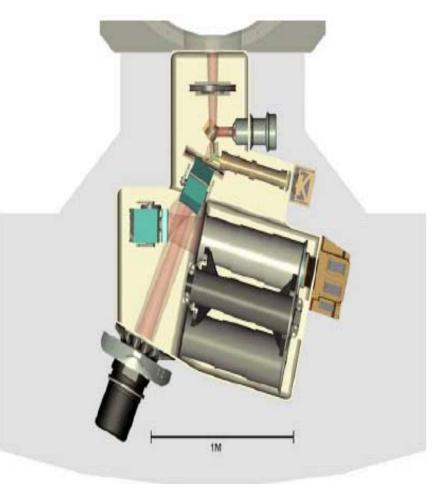
- Consider
 - Scientific opportunities
 - Technological developments
 - What is already available in Observing System
 - Costs
 - Timescales
- Involve
 - Community of potential users
 - Technical experts and potential builders

Gemini Instrument Planning 2003

- U.S. Workshop: May 2003; Tempe, Arizona
- Goal: Key Gemini Science Programs for 2008-2010 Realm
 - Limited number of high-impact science questions / projects
 - What observations are needed to answer the science question?
- 40 participants; diverse in science interests & institutional affiliation
- E-mail & telecon preparatory discussions
- Four Science Breakout Groups
 - Stars, the Solar System, and Extra-Solar Planets (leader: J. Valenti)
 - Star Formation Processes and the ISM (leader: M. Meyer)
 - Structure and Evolution of the Milky Way and Nearby Galaxies (leader: R. Wyse)
 - Formation and Evolution of Distant Galaxies and the High-Redshift Universe (leader: K. Glazebrook)
- Written report on Tempe conclusions (on NGSC Web site)

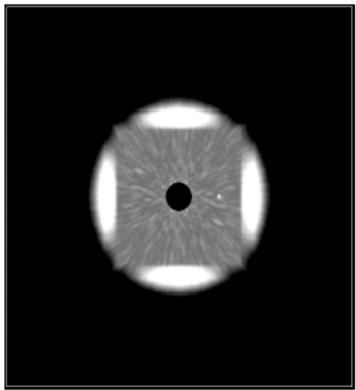
Gemini Instrument Planning 2003

- Gemini International instrument planning workshop
- Include representatives from national workshops
- June 2003, Aspen, Colorado
- 93 participants
- Science-area-based breakout groups
- Synthesis of science goals into instrument requirements


Instrumentation in the O/IR System

Gemini Instrument Planning 2003

Science Group	Capability Summary	λ	Spatial Resolution	Spectral Resolution	Field of View	Multiplex Gain	Primary Mode
Stars, Solar System, etc.							
	Extreme AO with IFU and						
Census of Planets	Polarisation	0.9-2.5	SR>0.9	30-300	3"	1	IFU+Polarisation+AO
Planets and stars	HiRES NIR Spectrometer	0005	See	70K (HIGH		4	molecular absorber (X-
	•	0.9-2.5		STAB)		1	disp)
Planets and stars	Optical HiRES spec	0.3-1.0	See	50-100K		1	
Star Formation/ISM							
How does structure/comp of				F			
ISM evolve?	1	8-17um	DL	>10 ⁵	PS	1	X-dispersed
	2	1-5um	DL	>3x10 ⁴	>2'	100	MOS
How are stars/planetary				_			
systems assembled?	3	1-5um		>10 ⁵	PS	1	X-dispersed
What determines the							
masses of stars?	4	1-5um	.05"	5	2"	1	contrast>10 ⁷
Structure/Evolution of MW							
and Nearby Galaxies							
	Optical MOS med-high			3K-20K (?)			
Galaxy genesis	res	3400A-9000A	Natural seeing	or 40K (?)	LARGE 40'	~1000	MOS
Dark matter Explorer	IR AO-fed spect.	2-2.4um	0.05	2k	20"X20"	1	IFU
Stellar pops.	Optical IFU spect	3400A-9000A	Natural seeing	5k	3'X3'	1	IFU
			need 0.4				
Local group proper motions	GLAO IR imager	0.6-2.5um	mas/dec		>10'		imager
Distant galaxies, high-Z universe							
			(Good) Natural				
Dark energy and Gal. Form	Opt-NUV MOS	3400A-1u	seeing	>500	>~30'	>1000	MOS
1st Light and Gal. Form	GLAO-fed NIR mapper	NIR	0.2"	>3000	10'	panoramic	Imager>
							dIFU>
							(TF?)
							(11:)


Future Gemini Instrument #1: High-Res Near-IR Spectrograph

- Wavelength Range: 1.1-2.5 μm OR 3-5 μm simultaneously
- Modes:
 - Single slit cross-dispersed seeing limited spectrometer
 - Multi-object MCAO-fed crossdispersed spectrometer (15-30 objects)
- Spectral Resolution: 70,000 (single slit) & 30,000 (MOS)
- Field of View: 2 arcmin (MOS mode)
- Cost: ~\$24M

Future Gemini Instrument #2: Extreme-AO Coronagraph

- Wavelength Range: 0.9 -2.5 μm
- Modes: Adaptive Optics Coronagraphic
 - multi-band IR imaging
 - Integral field unit (IFU)
- Field of View: ~3 arcsec
- contrast ratio of ~10⁷ within a 0.1-1.5" radius of central target
- **Cost:** ~\$14M

Simulation of Extreme-AO observations of 8M_{Jupiter} planet orbiting a star 36 light years away.

Future Gemini Instrument #3: Wide-Field Multi-Object Spectrograph

- Wavelength Range: 0.39 -1.0 μm
- Simultaneous stellar targets: 4000-5000
- Field of View: ~1.5 deg
- Spectral Resolutions: R ~ 1000 - 30,000
- Fiber fed prime focus instrument
- **Cost:** ~\$32M

Challenges

- High cost of scientifically enabling instrumentation
 ↔ funding issues
 - Challenge securing funding
 - Impact of potential overruns on institution budget
- Difficulty of managing such large projects
- New enabling technology carries risk
- Few groups have infrastructure to build large instruments
 - Clean rooms
 - Telescope / flexure simulation capability
 - Project management (expertise, culture)
 - System engineering (performance of integrated system)
- Difficulty keeping team together between projects Instrumentation in the O/IR System

Overcoming Challenges

- Some combination of partnerships and outsourcing can help overcome challenges
- Development partners (i.e., collaborators)
 - Bring significant expertise & infrastructure
 - Share risk
 - Benefit from funding & science gain
- Outsourcing to Suppliers (i.e., vendors)
 - Brings expertise
 - Can bring to bear fabrication capability much larger than at typical university or observatory
 - Fixed-price commercial contract lowers risk
- Scientific partners
 - Gain scientific influence & an instrument to use

Examples of Contributions by Partners or Suppliers

- Advanced grating technology (VPH; Si)
- Adaptive optics experience
- Optical & infrared array detector expertise
- Array controllers
- Multi-object spectroscopy techniques

- Coronography expertise
- System engineering
- Optical design
- Flexure test facility
- Software interface simulation
- Data pipeline expertise

Implementing Partners & Suppliers

- Cannot exceed number of partners that can be managed effectively
- Emphasis on project management & communication
 - Management of geographically & institutionally dispersed project
 - Strong Project Manager
 - Team meetings
 - Extended visits at partner institutions
 - Reporting transparency (schedule, financial)
 - Clarity of requirements & status
 - Formal requirements & interface specifications for instrument
 - Formal requirements & interface specifications for each subsystem
 - Document version control & distribution
 - Formal non-advocate reviews of project
 - CoDR, CDR, PDR, Pre & Post Ship Tests, Quarterly Reviews 15

Implementing Partners & Suppliers

- Need partners & suppliers with proper resources, experience, & commitment
- Clearinghouse for potential partners & suppliers needed?
 - Which suppliers & partners have been used by "system" projects? How did they perform?
 - Possible models:
 - Chamber of Commerce?
 - Web Yellow Pages?
 - E-bay seller ratings?

Summary

- Instrumentation plays a crucial role in enabling groundbreaking science.
- Scientific planning for future instrumentation that involves the community is essential.
- Instrumentation is technically challenging & expensive, and getting more so.
- Scale & technical complexity drive us toward collaborative projects.
- Managing such projects well is crucial and requires particular skill & planning.