

LSST Structural Design

Warren Davison - Steward Observatory

Il Kweon Moon - Steward Observatory

Special LSST design considerations

- Unique optics and mass distribution
- Center of mass of the optics alone is nearthe vertex of the primary
- ☐ The center of mass of optics plus cells is near the rear of the primary
- ☐ Therefore the elevation axis structure is the primary mirror cell

Rationale for high stiffness

- Telescopes benefit from better structural stiffness and thus servo performance in many ways.
 - Tracking is better.
 - Wind rejection is better.
 - Pointing corrections are smaller.
 - Optics moving with gravity is reduced.
- High stiffness is worth the trouble.

Servo Performance Criteria

- Experience has shown an alt-az telescope with a 1 Hz servo bandwidth will track at about 0.15 arcseconds rms.
- A good tracking servo performance goal is 2 Hz.
- Wind has significant power even up to 3 Hz.
- We need an Error Budget to do it right.
- We need servo analysis to do it right.

Derived Structure Performance Criteria

- Since the servo needs to be about 2 to 3 Hz. The structure needs a locked rotor resonant frequency of 4 times that or about 8 to 12 Hz.
- With the right design this is very realistic.
- Our preliminary design has a lowest frequency of 7.1 Hz which can easily be improved.
- ☐ We need to continue this effort.

Initial Evolution of Design

Concept

First Design

- The compliance of the mechanics depends on the square of their radius
- The bearings and drives of telescopes are usually made small to decrease their cost. Thus their compliance contribution is usually about 4 times the structure.
- Simply increasing the bearing surface and ring gear from 2m to 9m makes the same components 20 times stiffer which should double the frequency performance.

Telescope Design Features

- Center to center distanceof C-rings is 8m, glassdiameter is 8.4.
- Primary mirror cellmade an integral part of the structure.
- Top ring is largest diameter element.

Telescope Design Features

Swing radius of 9.2m Optical axis and telescope axis are not coincident to achieve balance.

Telescope Design Features

- Compact azimuth platform with the elevation bearings directly above azimuth bearings.
- ☐ Top of pier bearing surface 10.5 meters diameter.
- Lateral bearings on edges of C-rings.
- Center mechanical bearing or lateral bearing on side of azimuth bearing.

LBT Design features

- Compact azimuth platform with the elevation bearings directly above azimuth bearings.
- Top of pier bearing surface 14 meters diameter.
- Lateral bearings on edges of C-rings.
- Center mechanical bearing

FEA Telescope Model

- The FEA model has 25,800 degrees of freedom.
- □ Total mass 232 tons.
- ☐ Total elevation mass 163 tons.
- Optics mass 23 tons
- Secondary assembly mass x tons.

Elevation Structure FEA

- First resonant frequency 9Hz
 Elevation rocking mode.
- Can easily be improved by eliminating design error of front truss attachment

First Telescope Resonance

- The First resonant frequency of the entire telescope is at 7.1 Hz.
- Elevationmode causedby a localdeflection.

Second Telescope Resonance

Second mode8.7Hz.

LSST to LBT Comparison

Comparison of

LSST and LBT

Moving Mass

290 700 Metric tons

Crings

9 meters 14 meters

Pier Diameter

10.5 meters 14 meters

We can build LSST

- LBTassembled in Milan.
- LSST is about half this size, we can easily build it.

LBT Acceptance Tests

- LBT preliminary performance data with two of four motors on each axis.
 - Elevation resonant frequency 7hz
 - Azimuth resonant frequency 3hz and 10hz, The 3hz appears to be the electrical cabinet

Mass and cost estimate

- Least Resonant Frequencies should exceed 10 Hz.
- □ LBT grew from 560 tons to 700 tons from design to construction so LSST should finish around 290 tons (290/700=.41).
- □ Telescope Structure and Mechanics Cost 45% of LBT (21M) \$9.5 million .
- □ Telescope Structure and Mechanics Cost 170% of Magellan (6.1M) \$10.4 million .

- Credibility----How can I convince you we can build an 8.4m telescope structure which has only 270 tons of moving mass, a 10hz resonant frequency and cost \$10 million.
 - ☐ We need detailed engineering studies.
 - ☐ Start design to show critical systems.
 - What does it take for YOU to believe it.