

Optical design of Dark Matter Telescope: improving manufacturability of telescope

Lynn G. Seppala November 5, 2001

The attached slides contain some talking point that could be useful during discussions on manufacturability.

Design specifications for Dark Matter Telescope

• Diameter: 8.4 m

• Length: ~9.0 m

• Focal length: 10.5 m

• Focal ratio: f/1.25

• Field of view: +/- 1.5 degrees

• Back focal distance: 300 mm (Xenon fill)

• Energy collection >80% within 0.33 arcsec

• Obscuration: ~25% on axis

~40% full field

• Spectral band 500nm - 800 nm

- Baffled to prevent light from outside field of view reaching the detector
- Focal plane may be weakly curved, even aspheric
- Design type: Paul 3-mirror telescope
 - Primary focal ratio f/1
 - Window: 1 cm thick to contain Xenon gas at ambient pressure
 - Additional corrector lenses near detector as required

Additional design requirements have been considered to improve manufacturability

- Fabrication/testing of large (~3.5 m) convex secondary is technically challenging:
 - Aspheric departures on the secondary should be as small as possible
- Minimum number of aspheres to reduce fabrication difficulty
 - Minimize aspheric departures if possible
 - Keep the added aspheric terms to lowest possible power series [$< 8^{th}$ order]
- Minimum numbers of components to reduce scattering and ghost focus problems
 - Two corrector elements are required to contain xenon gas and provide 300 nm bandpass correction
 - Additional plane substrate is included for possible bandpass filter
- Reasonable refractive element thicknesses
 - Plane window: 1 cm thick
 - Corrector elements: edge or center thickness at least 3.5 cm

Status of current design study

- We have started to examine other system design parameters such as:
 - System length
 - Obscuration on-axis
 - Focal ratio leaving secondary
 - Distribution, number of aspherics and magnitude of aspheric departures
- For each design, we compare:
 - System performance in terms of angular sub tense of 80% energy collection
 - Vignetting losses
 - Component diameters
 - Aspheric departures of each component
 - Sag of detector at edge
- A summary of four designs is presented and compared to a July 2001 Tyson design
- Telescopes with 4 and 5 aspheres with reduced asphericities are attractive
- Designs are broadly achromatic over > 300 nm bandwidth
- Future work: comparisons should include sensitivities to element fabrication and telescope assembly/alignment/dynamic errors

Design summary for 5 designs including July 2001Tyson design:

xxx : more desirable

xxx: less desirable

300 nm bandwidth designs	LLNL-6 asphere 3 corr elements	LLNL -5 asphere	LLNL -5 asphere	LLNL -4 asphere	July Tyson- 8 asphere
System length (m)	9	9	10	9.1	9
8.4 m Primary	-	-	-	-	-
aspheric departure(parabola)(mm)	0.155	0.054	0.081	0.041	0.002
Secondary diameter(m)	3.4	3.3	3.3	3.4	3.56
aspheric departure(mm)	0.552	0.031	0.028	0.033	0.483
Tertiary diameter(m)	4.6	5.2	5.2	5.6	4.92
aspheric departure(mm)	0.108	0.137	0.047	0.198	0.163
Window diameter(m)	1.28	1.27	1.3	1.33	1.39
S1: aspheric departure(mm)	0	0	0	0	2.434
S2: aspheric departure(mm)	0.011	0.194	0.036	0.092	1.873
Corrector diameter(m)	0.85	0.85	0.85	0.85	0.867
S1: aspheric departure(mm)	0	0	0	0	0.258
S2: aspheric departure(mm)	0.398	0	0.007	0	0.328
0.55 m Detector	-	-	_	_	_
detector sag at edge(mm)	2.56	1.43	1.55	1.02	3.46
aspheric departure(mm)	0.039	0.006	0.011	0	0.020
80% energy collection diameter	0.22 arc-sec	0.33 arc-sec	0.31 arc-sec	0.28 arc-sec	0.28 arc-sec
Obstruction %:on axis/full field	25-38	25-42	25-42	30-37	26-37
Focal ratio:after 2ndary	f/31	f/9.1	f/9.6	f/7.6	collimated

LLNL 4 asphere design: 500 nm- 800 nm Telescope: 9.1 m length

LLNL 4 asphere design: 500 nm- 800 nm Telescope: 9.1 m length

Additional comments for 4 asphere design

- Light from secondary is diverging at f/7.6
- Aspheric departures on the 4 aspheric surfaces
 - Primary mirror
 - 41 µm aspheric departure from best fit parabola
 - Conic + 6th order aspheric
 - Secondary mirror
 - 33 µm aspheric departure from best fit sphere
 - Conic + 6^{th} , 8^{th} order aspheric
 - Tertiary mirror
 - 197 μm aspheric departure from best fit sphere
 - Conic + 6^{th} order aspheric
 - Refractive corrector
 - 92 µm aspheric departure from best fit sphere
 - 4th, 6th, 8th order aspheric
- Spherical detector, 1.02 mm sag at edge
- Focal shifts of the detector and corrector lenses will accommodate a different bandwidth with minor loss of resolution
- Inner hole on secondary is larger than detector/dewar: support detector from secondary

Four-asphere design with two corrector elements: design performs well over a broad spectral range

Ray intercept curves with no obstruction, 500-800 nm: on-axis and full detector diameter

•Performance is dominated by monochromatic aberrations

- •One can increase the spectral range to 600 nm [$0.4 \, \mu m 1.0 \, \mu m$]:
- •80% energy collection: <0.33 arc-sec over a detector diameter of 53 cm [96%]

July 2001 Tyson design

Ray intercept curves with no obstruction, 500-800 nm: on-axis and full detector diameter

July Tyson xenon-filled design

