Optical and Mid-IR Interstellar Dust Extinction Observations Karl D. Gordon STScI, Baltimore, MD USA Dusting the Universe Tucson, AZ 4 Mar 2019

ISM@ST member

kgordon@stsci.edu @karllark2000 karllark@github

Near-IR for Near Future

"Have Dust – Will Study"

Summary

- Spectroscopic diffuse ISM extinction measurements
 - Mid-IR and optical (joining UV)
- Silicate features 10 & 18 micron
 - Do not correlate w/ 2175 A or R(V)
- New optical features (4370, 4870, & 6300 A)
 - Two blue correlate w/ 2175 A
- NIR spectroscopic next
 - IRTF SpeX data in hand

Why Extinction?

• Pillar in constraining dust grain properties

Weingartner & Draine (2003)

Why Extinction?

Jones et al. (2013)

λ [µm]

Mid-Infrared Extinction

Past MIR measurements

- Selection (but representative)
- Usually high A(V) sightlines

Spitzer program

- Two programs (PIs: Gordon & Misselt)
 - IRS spectra (5-40 um)
 - IRAC/IRS Blue/MIPS photometry (pesky slit losses)
- Classical pair method
- Stars with measured UV extinction curves
 - Compare with UV properties
- Spectral reduction challenging
 - Multiple techniques used \rightarrow convergence!

Gordon, Misselt et al. 2019, goal submission

IR Spectra (standards)

IR Spectra

$E(\lambda - V)$ Curves

$E(lambda-V) \rightarrow A(lambda)/A(V)$

- Usually done via ~1.1 E(K-V)
- More accuracy needed
- Fit Pei (1992) functional form

No Correlations(!)

Optical Extinction

Optical Extinction

- Spectroscopic!
- Hubble/STIS

2

k(A-55)

- R(V) dependence
- Very Broad Structure

Fitzpatrick, Massa, Gordon, et al. 2019, almost submitted

6

Inverse Wavelength (μm^{-1})

Comparison to Previous (all from photometry)

3 Drudes + polynomial

Massa, Fitzpatrick, Gordon, et al. 2019, almost submitted

Near-Infrared Extinction

NIR Extinction

- Spectroscopic!
- NASA IRTF SpeX instrument
- Spectra taken, analysis soon
 - Publish before JWST launch

Summary

- Spectroscopic diffuse ISM extinction measurements
 - Mid-IR and optical (joining UV)
- Silicate features 10 & 18 micron
 - Do not correlate w/ 2175 A or R(V)
- New optical features (4370, 4870, & 6300 A)
 - Two blue correlate w/ 2175 A
- NIR spectroscopic next
 - IRTF SpeX data in hand

Thanks

Extinction (not Attenuation)

- Extinction
 - Absorption and scattering **out** of the line-of-sight
 - Specific to a point source behind a screen of dust
 - (not too near the point source)
- Attenuation includes information not present in extinction
 - scattering into the line-of-sight
 - Star/dust geometry
 - Applies to galaxies, regions of galaxies, stars with circumstellar dust

Simple Attenuation Example

