Trident: Scalable Compute Archive and Analysis Systems

Arvind Gopu

Soichi Hayashi, Mike Young, Ralf Kotulla*, Robert Henschel, et al.

Indiana University – Pervasive Technology Institute/Research Technologies *University of Wisconsin, Madison

March 11 2015

Big Data in Astronomy Workshop, Tucson, AZ

Trident in a Nutshell

♦ Secure data archive

- Metadata Search, View, Plotting Analysis
 - ♦ Build custom searches; Highly adaptive plotting interface
- Image Visualization and Basic Interactive Analysis
- Custom Integrated Data Processing Workflows
 - $\diamond\,$ Cater to individual stakeholder, application, and audience
 - User/Operator execution; Datasets/collections
 - ♦ Built-in Data *Provenance* and Processing Logs → *Reproducibility*
- Scale up/down in terms of functionality, system complexity, etc.
 - ♦ Adapts to Big Data, and nominally large or small data
 - Develop component for each distinct functionality; then compose application instance ("Composition over Inheritance" design pattern)

DEMO!

<u>https://iu.box.com/ODI-PPA-Demo-2015-Short</u>

♦ Plus a few screenshots

Not Shown: Lots of other functions including
 Administrative/operator/system health monitoring
 GCS-SCA, etc.

Source Explorer: Overlay (Zoomed out)

Source Explorer: Overlay (Zoomed In)

Image Preview, Metadata, QA, Provenance

-	4			3															01	1000		
															1000		2		100			
					2						_											
													ĨU.	2				10.00				
					122												×.					
		16. 4		1000		1					-											
3													10			1						
		1					E	Ĺ					100		100	1						
		-		- 12			4															
1 1		1		Ĩ			Ŧ	-	1	10	19											
	-						Ν.,					1										
								1														
								10		1	4	i.	100					*		111		
																	1					
	-					-									100		4					
																	3	100				
			1																			

				Add To Col	lection 👻	Explore Image
Fits Header	photZP	photZP_map	psfshape	seeing	wcs1	wcs2
XTENSION '	IMAGE '	/ Image	extension			
BITPIX		-32 / array	data type			
NAXIS		2 / number	r of array di	mensions		
NAXI51		4096				
NAXIS2		4096				
PCOUNT		0 / number	of paramete	rs		
GCOUNT		1 / number	r of groups			
QPIPESVN '	exported'	/ QuickF	Reduc <mark>e R</mark> evisi	on		
EXTNAME '	OTA33.SCI'					
ΟΤΑ		33 / OTA de	signation			
FPPOS '	ху33 '	/ positi	ion of detect	or in focal	plane mos	aic
PIXSIZE1		12.0 / pixel	size of axis	1 (microns)		
PIXSIZE2		12.0 / pixel	size of axis	2 (microns)		

Associations										
	OBJECT	PROPID	EXPTIME	RA	DEC	PHOTDPTH	SEEING	WCSCAL	CAL-OBS	
Parent images										
Raw Image	m51 g	2013A-0576	400	202.5851	47.2922	0	0	0	2013- <mark>05-11</mark>	
Bias	master-bias	test	0.001	0	0	0	0	0	2013-05-06	
Flat	master-flat odi_g	test	5	0	0	0	0	0	2013-05-08	
Dark	master-dark	2013A-0468	1	0	0	0	0	0	2013-05-06	
Child Images										
Stacks	m5 <mark>1</mark> g		3200.01	202.4847	47.2374	0	0	0	2013-05-11	

Instrument Data Flow Monitoring

DEMO!

♦ Briefly, let's get back to the demo!

Trident: Background

- Team: Combined 0.75 2.5 FTE at various times at IU + 0.5 – 2 External Pipeline Developers over several years (~2 years core)
- First Trident Project: WIYN One Degree Imager – Pipeline, Portal, Archive
 - \diamond Larger datasets \rightarrow Paradigm Shift
 - Prototype, User Engagement Workshops, Design Review, Dev & Testing, Ops
 - Scope *decrease* early on, then Scope *increase* (owing to detector expansion)

Trident Projects and Web URLs

ODI-PPA <u>http://portal.odi.iu.edu</u>

- Full Fledged Portal with Metadata & Visual Image Analysis, Archival Data Access, Integrated Pipelines
- ♦ Offshoots
 - ♦ Electron Microscopy: <u>http://portal.emcenter.iu.edu</u>
 - ♦ Archival Data Access
 - Another Astronomy Project <u>http://gcs.ppa.iu.edu</u>
 - Metadata Analysis and Data Publication
- ♦ Prototype
 - ♦ LMU-PPA: Wendelstein Wide Field Imager (||| to ODI)
 - ♦ Infrared Astronomical Imaging
- Papers: <u>http://ppa.iu.edu/publications</u>

Trident: Architecture / Design Choices / Thought Process

Web based Science Gateway model

- ♦ Balance legacy UI features and modern UI design; Consistent look and feel
- ♦ Integrate pipelines on existing CI accessible via portal
 - Custom UI for each of these
- ♦ Often times, UI tends to take a backseat usability becomes an afterthought
- Typical preference for generalized large scale web and middleware solutions: Pros and Cons
- Framework of Frameworks

 Not one package/tarball/RPM model – instead, customized to each stakeholder's requirements.

Trident: Architecture / Design Choices / Thought Process

- MVC Design Pattern
- - + Portability, Ease of Use, Scalability
 - Harder to track/monitor system health
- ♦ RHEL 6.5/Centos 7.x KVM
 - Separate production/test/dev stacks
 - Leveraged Project and Institutional CyberInfrastructure

Trident: Open Source Libraries and Applications Used

Common Tools/Applications

♦ Open Source *Libraries*

PHP-Zend, Bootstrap, AngularJS, jQuery, HighCharts, TileViewer
 NumPy, SciPy, PyFITS, <u>etc.</u>

Integrated Pipelines – incl. custom input and output UIs
 QuickReduce (WIYN), SWarp, SourceExtractor, IRAF
 ViZier for catalog lookup and overlay

Trident: Scalability Bubble size = Processing time log (CPU hours)

Keys to Scaling Up: DESIGN

♦ AMQP: No ports to open, no files to create/cleanup on shared file systems → Clean and Secure

♦ Plus Search Form Builder (for example) ♦ Any Unix Command Line Appl. can be integrated with custom UIs \otimes Initial version: Integrated QR in 2 weeks ; SWarp in 1 week ♦ Highly Customizable & Polished version: 4-8 weeks for development and testing Scaling Horizontally / Resource Scaling ♦ A user workflow job could go to one of N backend instances ♦ Add more resources as required

Keys to Scaling Up: LEVERAGED IU CYBERINFRASTRUCTURE

♦ 32-core and 16-core nodes (latter with GPUs)

- Multiple Virtual Machine options
- State of the Art Data Center with a ton of expansion space

Keys to Scaling Up: SCALABLE APPLICATIONS

- Design: Server-Manager-Worker framework (vs. typical master/slave)

 Advantage: Flexible # of nodes during execution, easy support for workflows

 ♦ Scaling: Most I/O work done on nodes, minimal communication between servers and workers → good scaling

- Caveat: Network-served data can be I/O bottleneck (even at 40GBit/s bandwidth)
- ♦ Benchmark Numbers: Performance scales linearly with number of nodes out to ~128 nodes40 MegaPixels/s raw data, limited by I/O

Trident + AMQP QR: Case Study of LSST Data Volumes

- ♦ LSST rate $(165MPix/s) \rightarrow$ would need 185 nodes
 - All internal I/O (inter-process comm, export for SourceExtractor) using memory or RAM-disk
- Investigating I/O bottleneck on shared cluster file system
- Network-I/O performance critical for future systems

♦ 50% of LSST needs today on shared supercomputer!

Thank You!

♦ Feel free to register on ODI-PPA: <u>https://portal.odi.iu.edu</u>

Trident Project Acknowledgments

♦ We are grateful to several people/groups including (but not limited to):

- ♦ The IU-PTI/RT Storage, HPS, HPFS teams that maintain the SDA tape system, the super computing clusters, and the Data Capacitor disk systems!
- ♦ Thomas Lee, system administrator consultant
- ♦ WIYN Collaborators including UW-Milwaukee/Madison and NOAO (ODI-PPA)
- ♦ David Morgan, Operations Coordinator for IU EM Center (EMC-SCA)
- ♦ Kathy Rhode, IU Astronomy Professor (GCS-SCA)
- ♦ Claus Goessl, LMU, Munich (LMU-SCA)

♦ Developers/maintainers of all the open source libraries and applications we use within the Trident!

ODI-PPA – Partner Organizations

ODI-PPA is a collaboration of the following organizations

- Pervasive Technology Institute (PTI) and UITS Research Technologies (RT) + IU Astronomy
 - ♦ Capitalize on the expertise of PTI members who have led the effort to provide scientists in many different fields with user-friendly access to super-computing facilities
 - $\Leftrightarrow~$ IU Astronomy Expertise, Feedback
- University of Wisconsin (Astronomy)
 - $\Leftrightarrow\,$ Build on the experience of Python based pipeline development experience.
- ♦ WIYN
 - ♦ Experience running telescopes, and supporting Astronomy scientific community

NOAO Science Data Management group

 $\diamond~$ Build on the experience of SDM and the legacy of IRAF and NHPPS Pipeline system

