TOOLS FOR ASTRONOMICAL BIG DATA

Characterizing the variable sky with CRTS

Matthew J. Graham
Center for Data-Driven Discovery, Caltech
and NOAO

March 10, 2015

The extended CRTS team

S. George Djorgovski, Caltech (PI)

Andrew Drake, Caltech (Co-PI)

Ashish Mahabal, Caltech

Ciro Donalek, Caltech

Daniel Stern, JPL/Caltech

Eilat Glikman, Middlebury

Eric Christensen, UA

Steve Larson, UA

+ students

Matthew J. Graham

Time domain astronomy: old style

Matthew J. Graham March 10, 2015

Rebooting the time domain

- Palomar-Quest Synoptic Sky Survey
- SDSS (Stripe 82)
- Catalina Real-time Transient Survey
- Palomar Transient Factory
- Pan-STARRs
- SkyMapper
- ASKAP
- ThunderKat (MeerKAT)
- GAIA
- LIGO
- IceCUBE
- LOFAR
- LSST
- SKA

Matthew J. Graham

Catalina Real-time Transient Survey (2005-)

- Collaborative survey with Catalina Sky Survey (LPL, UA)
- Unfiltered observations 21 nights/lunation covering up to 2000 deg²/night
- Covers 33000 sq. deg. (0 < RA < 360, -75 < Dec < 70).
- Calibrated photometry for 500 million objects (> 100 billion data points)
- Depth V = 19 to 21.5
- 100 600 observations in most regions (median ~ 250)
- More published SNe and CVs than any other survey (public instantly)
- Open data policy (http://catalinadata.org)
- ~3% LSST

Matthew J. Graham

Understanding astronomical time series

Why is this interesting:

Amplitude

• And this is not:

$$\sum_{i=1}^{n} A_{i} \sin(\omega t + \phi_{i})$$
Fourier

Amplitude

March 10, 2015 Matthew J. Graham

Characterizing phenomenology

- Data is irregular, noisy, gappy and heteroscedastic
- Measuring:
 - Morphology (shape): skew, kurtosis
 - Scale: Median absolute deviation, biweight midvar.
 - Variability: Stetson, Abbe, von Neumann
 - Timescale: periodicity, coherence, characteristic
 - Trends: Thiel-Sen
 - Autocorrelation: Durbin-Watson
 - Long-term memory: Hurst exponent
 - Nonlinearity: <u>Teraesvirta</u>
 - Chaos: Lyapunov exponent
 - Models: HMM, CAR, Fourier decomposition, wavelets
- Defines high-dimensional (d > 100) feature space

What are "interesting" features?

 For a given class of object, which features contribute to its classification:

$$class = g(f(x_1, x_2, x_3, ..., x_n)))$$

- -g(x) is Heaviside step function or logistic function
- f(x) is an equation for the discriminating hyperplane which defines a class in some high-dimensional feature space
- $-x_i$ are the useful features
- Symbolic regression finds a function, in symbolic form, that fits a sample of data
 - Genetic algorithm
 - Employs an alphabet of mathematical building blocks
 - Produces a small set of final candidate analytical expressions on accuracy-parsimony Pareto front

(Graham et al. 2013)

Quasar variability

- First quasar identified 3C 48 most striking feature was that the optical radiation varied
- Physical origin of photometric variability in optical/UV is unclear
- Many studies based on small sample size or (very) sparse time sampling
- The current best statistical description is damped random walk (CAR(1)):

$$dX(t) = -\frac{1}{\tau}X(t)dt + \sigma\sqrt{dt}\varepsilon(t) + bdt \quad \tau, \sigma, t > 0$$

characterized by σ^2 and τ

• 335000 spectroscopically-confirmed quasars in CRTS archive

An interesting feature: Slepian wavelet variance

- Wavelets allow localized time and frequency analysis
- A time series can be decomposed by applying a set of wavelet $W_{j,t} = \sum_{i=0}^{L_j-1} h_{jl} X_{t-l}; t=0, \pm 1,...; j = 1,2,...; L \ge 2d$ filters
- The wavelet variance at a given scale:

$$\tau_j = 2^{j-1}\overline{\Delta} \; ; \; \nu_X^2(\tau_j) = \text{var}(W_{j,t}) \; ; \; \text{var}(X_t) = \sum_{j=1}^{\infty} \nu_X^2(\tau_j)$$

gives the contribution to the total variance of the time series due to scale τ_i

- Characteristic scales are indicated by peaks or changes of behavior in $log(v_X^2)$ vs. $log(\tau_i)$
- Slepian wavelets work with irregular and gappy time series

Quasars are different

March 10, 2015 Matthew J. Graham

A restframe characteristic timescale

 Related to the viscous crossing time of a noise field driving the perturbations causing photometric variability?

> March 10, 2015 Matthew J. Graham

Quasar selection via variability

	<u>Completeness</u>	<u>Purity</u>
Structure function	71%	96%
Damped random walk	91%	66%
Slepian wavelet	93%	80%
Ensemble variability (stacking)	97%	95%
Ensemble var. + WISE color	99%	99%

• CRTS Quasar Catalog in preparation: 1M quasars

Matthew J. Graham March 10, 2015

Subtype selection via variability

- Analyze feature distributions for identified subclasses:
 - Blazar
- LoBAL

Strong iron emission

- Radio HiBAL

- X-rayStrong reddening In UV
- Type 2 Weak emission lines
- Variability amplitude:
 - Blazar, radio, type 2, weak lines, strong Fe II
- Characteristic timescale:
 - Blazar, radio, X-ray, type 2
- WISE color (W1 − W2):
 - Radio, X-ray, HiBAL

Beyond CAR(1) = CARMA(1,0)

"Why should the accretion disk around a SMBH behave in a stationary fashion?" - Eric Feigelson

- Hints that CAR(1) not sufficient from Kepler, OGLE, CRTS
- Kelly et al. (2014) describe a formalism for CARMA(p,q) models:

$$\frac{d^{p}y(t)}{dt^{p}} + \alpha_{p-1}\frac{d^{p-1}y(t)}{dt^{p-1}} + \dots + \alpha_{0}y(t) = \beta_{q}\frac{d^{q}\varepsilon(t)}{dt^{q}} + \beta_{q-1}\frac{d^{q-1}\varepsilon(t)}{dt^{q-1}} + \dots + \varepsilon(t)$$

- Initial best fit results from 2634 quasars (using Microsoft Azure) allocation) show that lower p (autoregressive) are favored and smaller q (moving average) for a given p
- Higher p correlates with variability amplitude (MAD) complexity?
- No moving average term means no noise term
- (CO)GARCH models (stock market volatility) are too complicated

SMBH binaries

- Expected consequence of galaxy mergers
- Closest (sub-parsec) system are not resolvable except possibly with long baseline radio interferometry
- OJ 287 shows a pair of outburst peaks every 12.2 years for at least the last century

 Systematic searches have so far looked for broad-line velocity offsets in spectra

Matthew J. Graham March 10, 2015

Searching for SMBH binaries

- Joint wavelet and autocorrelation function-based technique to look for strongly periodic behaviour
- Interested in a kinematic (Keplerian) signal
- Assuming period from 20 300 weeks, sky coverage of 2π ster., V <20, 0.5 < z < 4.5, 450 binaries are predicted
- 111 candidates identified out of 340000 quasars

• Simulated data set of objects following a CAR(1) model gives 0

candidates

Matthew J. Graham March 10, 2015

PG 1302-102

- z = 0.28, core-dominated flat-spectrum radio source
- Luminous elliptical host with nearby companions
- Coincident radio and optical structural features

(Graham et al. 2015, Nature, 518, 74)

Matthew J. Graham March 10, 2015

Possible interpretations

- Superposition of thermal emission from accretion disk and non-thermal contribution from a precessing jet driven by SMBH binary
- Warped accretion disk caused by SMBH binary
- Periodic accretion rates from a SMBH binary can lead to an overdense hump in the inner circumbinary accretion disk
- Hydrodynamical simulations suggest that strongest periodicity associated with cavity in circumbinary disk => true binary period 3-8 times shorter

(D'Orazio et al. 2015)

If it is a SMBH binary...

- Restframe period of 1443 days and total mass of 10^{8.5} M_{sol} gives an upper limit separation of ~0.01 pc (276 R_s) (~90 R_s?)
- Further monitoring is needed
- Multiple periods with cavity and broad line widths
- Reverberation mapping to distinguish between different scenarios
- Strong candidate for gravitational wave experiments sensitive

to nanohertz frequency waves

Matthew J. Graham

- Same telescopes but bigger cameras (already built):
 - MLS 1.5m: 1.2 sq. deg. -> 5 sq. deg.
 - CSS 0.7m: 8.2 sq. deg -> 19 sq. deg.
- 3600 sq. deg. per night
- 1600 sq. deg. at daily cadence
- Offers:
 - 5x transient rate
 - Earlier detection
 - Better time coverage
 - Increased sensitivity to transients and variables:
 - Microlensing, TDEs, orphan GRBs, SN shock breakouts, ...
- Funded by NSF until 2017

LA SERENA SCHOOL FOR DATA SCIENCE Applied Tools for Astronomy

AURA Campus La Serena - Chile

THIRD ANNUAL SCHOOL DATES: 16-23 AUGUST 2015

- Training the next generation of scientists (in fields of astronomy, mathematics, computer science, and others) in the tools and techniques of massive data in Astronomy
- International program: funding for students from Chile and the U.S.
- Target students: senior undergraduate and beginning graduate students

For further information, visit our website:

http://www.aura-o.aura-astronomy.org/winter_school/

Registration still open – late abstract deadline: 15 April 2015

http://hotwireduniverse.org

Matthew J. Graham March 10, 2015