The ANTARES Project

Hunting the rarest of the rare

Gautham Narayan NOAO/UA

Rick Snodgrass, John Kececioglu, Abi Saha, Tom Matheson, Rob Seaman, Tim Jenness

Grad Students: Jackson Toeniskotter, Shuo Yang, Zhe Wang, Jen Dempsey

http://www.symmetrymagazine.org/article/march-2015/a-telescope-that-tells-you-when-to-look-up

LSST is the elephant in the corner

LSST understands the need for Alert Brokers

We are building an alert broker!

"Drink deeply from the firehose."

-Eugene Magnier
Email to the IPP Users Group on commencement of PS1 "Demo Month"
data processing
02/11/2010

The Petahosed

Number of Artifacts are much larger than number of Alerts

The Alert Stream is Dirty

ML being used for artifact rejection - work on using random forests. Already being used by PTF survey (Brian Bue)

See Guillermo Cabrera (U. Chile)

Cadence

Every year is getting shorter
Never seem to find the time
Plans that either come to naught
Or half a page of scribbled lines

-R. Waters+ , 1973 The Dark Side of the Moon

Why should you care about cadence?

- * LSST has only simulated a few cadences
- Metrics Analysis Framework
 (MAF) to assess different
 cadences
- * You write metrics to optimize for the science you care about, LSST runs simulations

A big problem, with a side of challenges

- * LSST cadence (not finalized) strongly affects what we can find
- Cross-matching is slow & external catalogs change
- * Different "features" are relevant for different classes of variables and transients
- Many well-studied algorithms aren't directly applicable

A big problem, with a side of challenges

- * We don't know what we'll find
- * We'll find it very inefficiently
- * We can't agree if it was worth finding in the first place
- * We aren't sure how to find it at all

ANTARES

- Arizona-NOAO Temporal Analysis and Response to Events System
- * Will winnow down the number of LSST alerts and let you pick the "most interesting"
- Will serve generic needs we don't just care about SNe
- * Archived alerts with contextual information

Targets and Timescales

- * Minutes: Flares, transits, exotic microlensing, dwarf novae
- Hours: NS-NS mergers, NS-BH mergers, orphan afterglows, stellar rotation, shock breakout, eclipsing binaries, exoplanet phase curves
- * Days: Exploding asteroids, WD-WD mergers, WD-NS mergers
- * Weeks: Variables and Transients
- * Anything else you might like to find in LSST and follow with current and next-generation ELTs

What we are doing

Saha+ (arXiv:1409.0056)

- * Ingest all LSST alerts, annotate
- Correlate with other sources (e.g. LIGO)

Annotating Alerts: Adding Value

Can predict variability given galaxy model and galactic coordinates of alerts using Kepler Q13 data (*Ridgway+ arXiv:1409.3265*)

Annotating Alerts: Adding Value

- Working on collecting and cross-indexing several hundreds of astronomical catalogs (*G. Narayan*, *T. Matheson*, *A. Saha*, *R. Seaman*, *T. Jenness*) must be local, will be open
- * Cone search on HTM using SciSQL (*Zhe Wang, Richard Snodgrass*) with adaptation for galactic plane
- Large Survey Database (Mario Juric, Eddie Schlafly +)
 http://research.majuric.org/trac/wiki/LargeSurveyDatabase

What we are doing

Saha+ (arXiv:1409.0056)

- * Ingest all LSST alerts, annotate
- Correlate with other sources (e.g. LIGO)
- Derive features from alerts +
 annotations + past history
- * Use features to characterize, filter "known sources"

Better Algorithms

- UA computer scientists developing new algorithms
- * Avoid sensitivity to population size, tolerant of missing data, incorporate uncertainties, work with smaller heterogenous training sets (*John Kececioglu*, *Jackson Toeniskoetter* + *NOAO*)
- * Currently testing on LINEAR, SDSS, and PS1 MDS transients

$$d(p,i) - d(p,t) \ge 1$$

 $error(p, t, i) = max\{0, 1 - d(p, i) + d(p, t)\}\$

Better Algorithms

- UA computer scientists developing new algorithms
- * Avoid sensitivity to population size, tolerant of missing data, incorporate uncertainties, work with smaller heterogenous training sets (*John Kececioglu*, *Jackson Toeniskoetter* + *NOAO*)
- * Currently testing on LINEAR, SDSS, and PS1 MDS transients

Better Algorithms

- * UA computer scientists developing new algorithms
- * Avoid sensitivity to population size, tolerant of missing data, incorporate uncertainties, work with smaller heterogenous training sets (*John Kececioglu*, *Jackson Toeniskoetter* + *NOAO*)
- * Currently testing on LINEAR, SDSS, and PS1 MDS transients

Classification Results

- * 10 fold validation on multi-label sets
- * This is a supervised algorithm that needs labelled data
- * Does what observers do compares candidates to what we already know in complex multi-dimensional feature space
- * Fast

	Class 0	Class 1	Class 2	Class 3	Class 4	Average	Overall
Euclidean, kNN	97.02	69.18	88.79	87.11	100.0	88.42	85.52
Euclidean, Emp.	98.53	85.45	76.16	62.75	98.13	84.20	88.75
AE, Equal Weight, kNN	93.94	13.38	95.05	85.71	100	77.62	65.35
AE, Equal Weight, Emp.	98.43	25.74	94.44	63.87	100	76.50	70.41
Matrix, kNN	77.32	73.08	90.91	98.88	98.21	87.68	79.30
Matrix, Emp.	90.39	92.20	71.52	81.79	29.46	73.07	86.80

What we are doing

Saha+ (arXiv:1409.0056)

- * Ingest all LSST alerts, annotate
- * Correlate with other sources (e.g. LIGO)
- Derive features from alerts +
 annotations + past history
- Use features to characterize, filter "known sources"
- * As volume drops, processing complexity will increase

Marcus Lee (TOCC, NOAO Summer 2014 REU Program, now UA)

Modeling the variable and transient sky

- Building models of several classes of variables and transients
- * Simulations to ANTARES end-toend, *ultra-characterization*
- Similar architecture to SNANA for SNe

Combos

Associating an alert with individual objects and forking may not capture all the information

Combos coalesce forked alerts to find events that are interesting with a wider context

Progress Report

- Prototype construction in full swing (v1 Summer 2015)
- Scaling and optimization through 2016
- * Run on live alert streams in 2017
- Likely NCSA collaboration during LSST operations
- * LSST and ANTARES can use input from You

If you are interested in rare & exotic transients, we'd like to know what they look like.

We can help you find them.