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Focus on Complexity and Discovery

 Complexity is a a challenge in the analytics of Big Data, new 
algorithms are needed

 Big Data have various complexities, not only “more” or “less”, 
but “different”
 Even among different hyperspectral data 

 Discovery is finding what we do not know … can’t characterize 
in advance (no models) -> more / unknown complexity 
makes it more difficult

 Neural maps as tools: may be the closest analog to how the 
brain makes sense of big / complex data

Hyperspectral data: fused “wide data” – in this talk all channels 
are used together. 
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ALMA spectra from combined C18O, 13CO, CS lines, 
showing differences in composition, Doppler shift, 
temperature 

Hyperspectral imaging 
of terrestrial (planetary) and astronomical objects
Astronomy example

Variations of 
absorptions in 
spectra of 
melting snow 
in response to 
temperature 
changes
(speclab.cr.usgs.
gov)

Sample emission spectra

Broad-band:
Landsat TM 
6 channels

MODIS
28 channels

100-500 channels

Hyper-
spectral

Evolution of terrestrial imaging

(Data credit: JVO, project 2011.0.00318.5) 

170 channels: C18O, 13CO, CS lines stacked
Spectral resolution: 0.122 MHz

Sample image planes from ALMA Band 7, HD 142527

329.299-329.305GHz 330.555 – 330.564

Ch

342.850-342.856

1 50 51 120 121 170
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Astronomy example

Variations of 
absorptions in 
spectra of 
melting snow 
in response to 
temperature 
changes
(speclab.cr.usgs.
gov)

Astronomical images 
can have thousands of 

channels!
ALMA has receiver Bands 1 – 10. 

This sample is only from one 
receiver (Band 7). 

Sample emission spectra

170 channels: C18O, 13CO, CS lines stacked
Spectral resolution: 0.122 MHz

Image planes from ALMA Band 7, HD 142527

329.299-329.305GHz 330.555 – 330.564

Ch

342.850-342.856

1 50 51 120 121 170

(Data credit: JVO, project 2011.0.00318.5) 

ALMA spectra from combined C18O, 13CO, CS lines, 
showing differences in composition, Doppler shift, 
temperature 

Hyperspectral imaging 
of terrestrial (planetary) and astronomical objects

All channels will be used together 
(as n-dim pattern vectors) for analysis 
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Highly structured data space

Merényi, Taşdemir, Zhang, Springer,LNAI 5400. 2009 

 Highly structured

 High-dimensional
 Large (number of data points)
 Multi-modal (has clusters)

Complex (complicated) data space

Hyperspectral data have many clusters with 
widely varying shapes, sizes, densities, 
proximities, local dimensionalities …

 Not linearly separable

 Widely varying shapes and sizes

 … densities (vary within and 
across clusters)

 … proximities
 … local dimensionalities

Imagine in 100 dimensions!

No statistical models

Small hyperspectral data can also be complex 
and resist discovery with many methods.
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Motivation - The First Case, from Tucson 
Finding olivine and pyroxene subgroups of S asteroids with Self-Organizing Maps

Howell, Merényi, Lebofsky, JGR 99, 1994

0.3 µm 1.1 µm

8-color survey (Tholen, 1984)
589 objects, in 8 spectral bands

52-color  survey (Bell et al. 1988)

2.5 µm

117 objects, in 52 bands

0.8 µm

• Tholen taxonomy of asteroid 
compositions established based on 
spectral shapes in 8-color survey

• Techniques used for clustering: PCA, 
Minimum Spanning Tree, band ratios, 
G-mode analysis

• Bell’s 52-color survey: extended 
spectral range and (hyperspectral) 
resolution (albeit less objects)

• Discovery of more structure was 
expected – but not found 

• Specifically, end groups of 
silicate (S) asteroids

Previous work
Our SOM portrait of 8-color objects:

Matches Tholen’s taxonomy

Colors: 
Tholen 
labels 

Fences:
Our SOM
clusters

S 
asteroids

Doubtful
classification

Mislabeling 
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Motivation - The First Case, from Tucson 
Finding olivine and pyroxene subgroups of S asteroids with Self-Organizing Maps

Howell, Merényi, Lebofsky, JGR 99, 1994

0.3 µm 1.1 µm

8-color survey (Tholen, 1984)
589 objects, in 8 spectral bands

52-color  survey (Bell et al. 1988)

2.5 µm

117 objects, in 52 bands

0.8 µm

SOM portrait of 60-color objects:
Does not match Tholen’s taxonomy

Our SOM portrait of 8-color objects:
Matches Tholen’s taxonomy

Colors: 
Tholen 
labels 

Fences:
Our SOM
clusters

S 
asteroids

Mislabeling 

Doubtful
classification

Pink &
Purple:
S types

So:
Olivine rich
Sp:
Pyroxene 
rich
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PCA vs SOMPrinciple Component views of 13-color asteroid 
spectra (spectral subset of the 60-color data)

None of the 76 pair-wise PC plots resolve 
all 16 known clusters in this data set. 

Colors and symbols indicate the known 
labels.

All clusters were found from an SOM.

Merényi, Howell, Rivkin, Lebofsky,  Icarus 129 (1997)

SOM view of the
13-color asteroid spectra
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SOM latticeInput buffer

Data 
space

M ⊆ Rn

Formation of basic SOM (Kohonen, early 80’s)

x  = (x1, x2, …, xd) ∈ M ⊆ Rd input pattern
wj = (wj1, wj2, …, wjd)  j=1, … , P  weight vector of 

neuron j (prototype j)

Learning: cycle through steps 1. and 2. many times

1. Competition
Select a pattern x randomly.
Find winning neuron c as
c(x) = arg min ||x - wj||, j=1, … , P

j

2. Synaptic weight adaptation / cooperation
wj(t+1) = wj (t)+a(t) h j,c(x) (t) (x - wj(t)) 

for all wj in influence region of node c
in the SOM lattice, prescribed by h j,c(x) (t)

h(t): most often Gaussian centered on node c
h j,c(x) (t) = exp(-(c-j)2/σ(t)2)

Prototype-based Learning With Self-Organizing Map 
Most widely used machine learning model of biological neural maps

Manhattan dist. 
In SOM lattice

j

i

k

wj1

wjn-1

1x

2x

1−Dx

Dx
n-1

n

Euclidean dist. 
in data space

SOM learns the structure of the 
data and represents it on a low-
dimensional lattice, in a topology 
preserving fashion. 

(If learning goes correctly … )

The SOM learns very well. 
Extraction of the prototype groups 
from the learned SOM is the 
challenge.

Simultaneous
- Adaptive Vector Quantization 
(VQ), and
- Ordering (indexing) of the 
prototypes in the SOM grid 
according to their similarities

x
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Structure discovery in complex data with Self-
Organizing Maps 

 Effective post-processing of the SOM is key to the extraction of 
clusters
 The information learned by SOMs is generally underutilized for 

interpretation of data structure (cluster extraction)
 Advanced / information theoretical variants are underutilized, 

metrics untapped.

 Exploitation of the SOM makes a difference for complex data

Side note on SOM efficiency:

Prototype-based learning produces sparse representation of data,
reduces volume during learning – advantage over graphical methods for 
Big Data 

N = 10^6 data need ~ 10^12 graph edges;  N -> N^2
N = 10^6 data can be expressed by ~ 10^3 SOM prototypes; 

N -> sqrt(N)
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Structure / complexity of data as expressed by 
Voronoi tessellation and Delaunay graph

2-d “clown data” 
(Vesanto and Alhoniemi, IEEE TNN, 2000) 

mouth

nose

right eye
left eye

Simple Somewhat complicated

Cannot show the V-cells / D-graph of higher-d data in data space! 

The V-cell and D-graph structure increases from left to right. 

Artificial (noiseless) 2-d data, with learned SOM prototypes shown in the data space 

V-cell: pink, D-graph: gray V-cell: green, D-graph: black
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2-d “clown data” 
(from Vesanto and Alhoniemi, IEEE TNN, 2000)                     

Delaunay triangulation
Masked Delaunay
triangulation

D-graph and masked D-graph of the Clown
wrt 17 x 17 SOM prototypes

right
eye

left
eye

nose

mouth

Voronoi polyhedra

• The prototypes, learned by an SOM, nicely follow the data distribution
• The prototypes are at the vertices of the D-graph

Emerging: Curve of mouth
Mass/shape of nose, eyes
Gaps between eyes and nose Body: low density

comp. to nose
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The importance of SOM learning: 
builds masked D-graph

 Martinetz and Schulten, Topology Representing Networks, IEEE TNN 1994: 
Competitive Hebbian learning – as in neural maps - guarantees the 
construction of the masked D-graph of the (learned) prototypes (under one 
condition).

 Easy to do: For each data point v ∈ M ⊂ Rn record the BMU and 2nd BMU pairs 
(in the learned SOM) 

-> these will be the connected edges of the masked D-graph 
(V-neighbors in data space); 

-> pairs of prototypes that are not chosen together as BMU and 2nd

BMU by any data point, will not be connected in the D-graph.   

 The generated masked D-graph can be stored as an Adjacency matrix A that has a 1 
at A(i,j) if prototypes i and j are connected (selected together) by at least one data 
point. 
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Adjacency Connectivity

i

j

Connectivity (CONN) graph representation
(Taşdemir & Merényi, IEEE TNN 2009)

“Clown”
2-d data

(Vesanto &
Alhoniemi
IEEE TNN 2000)

Masked
Delaunay
graph
- binary

Weighted
masked
Delaunay
graph
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Adjacency Connectivity

“Clown”
2-d data

(Vesanto &
Alhoniemi
IEEE TNN 2000)

Masked
Delaunay
graph
- binary

Weighted
masked
Delaunay
graph

left eyeright eye

body

mouth

O1
O2

nm

Connectivity 

Connectivity (CONN) graph representation
(Taşdemir & Merényi, IEEE TNN 2009)

nose

mouth
nm
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Adjacency

left eyeright eye

body

mouth

O1
O2

nm

Connectivity

body

O1
O2 right eye

mouth
left eye

nm

nose

A classic representation:
U-matrix ( Σ|| wi – wj|| ) 

overlain the SOM grid

Bonus: CONN
shows topology
violations

body

O1
O2 right eye

mouth
left eye

nm

nose

CONNectivity matrix draped 
over SOM grid: The SOM / 
CONN portrait of the Clown 

(hexagonal SOM lattice)

Can be shown 
for data dim >2

Cannot be shown 
for data dim > 2

Connectivity (CONN) graph representation & visualization
in data space vs on the SOM lattice (Taşdemir & Merényi, IEEE TNN 2009)
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Deviations from the exact 4:2:1 proportions are due to the small size of the 
SOM, integer arithmetic, and the formation of inter-cluster gaps

15 x 15 SOM  lattice
“Fences” between SOM cells 
show degree of dissimilarity 
of prototypes on gray scale 
(white is large difference) 
-> outline cluster boundaries

Intensity of monochrome red
is proportional to # data points 
mapped to the prototype in each 
SOM cell 
-> shows even distribution

The knowledge of SOM
mU-matrix

A:48
B:49 
C:25
O:21
D:13
H:9
I:10
M:9

# Prototypes
in clusters:

The truth labels super-
imposed on the SOM

Linear A: 4096
B: 4096
C: 2048
O: 2048
D: 1024
H: 1024
I: 1024
M: 1024

# Data points
in clusters:

Spatial map
of classes in
image cube Spectral 

signatures,
offset for clarity

Merényi et al. IEEE TNN 2007

Maximum entropy mapping with Conscience SOM (De Sieno, 1988)

Learning a 6-d synthetic data set with 8 known classes

Discovery of small clusters 
with “SOM magnification” 
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1000 steps 10000 steps 100000 steps 1000000 steps

Monitoring the learning of the 8-class synthetic data
with TopoView (Merényi, Taşdemir, Zhang, Springer, LNAI 5400. 2009) 

Learning of topography not yet complete but SOM state is perfect for cluster capture.

1000 steps 10000 steps 100000 steps 1000000 steps

Top: All topology violating connections superimposed on mU-matrix
Bottom: Same with majority truth labels overlain.
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Data: Ocean City, Maryland, 
Daedalus AADS 1260 scanner, bands 3 – 10
(Csathó, Krabill, Lucas and Schenk, 1998)

18 clusters, found by ISODATA (K-means) 28 SOM clusters, extracted with CONN visualization

SOM vs K-means clustering of multi-spectral image (8-d 
spectra as input data vectors)

Merényi et al., URBAN 2007

K-means does reasonably well on these relatively low-dimensional 
spectral data
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35 SOM clusters 21 K-means clusters

Large building
(SOM cluster D) 

Coast guard bldg
(SOM cluster a)

Buildings clearly 
outlined

Confusion of  
clusters

Merényi et al., URBAN 2007

K-means does poorly – great confusion of clusters

SOM vs K-means clustering of hyperspectral image
(196-d spectra as input feature vectors)
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Spectral Statistics of Clusters, Ocean City 
196-band Hyperspectral Image of Urban Area

SOM
35 clusters
Many unique
spectral types,
“tight clusters”

pink bldg

U bldg

lilac bldg

water tower

Tennis court

K-means
21 clusters
Interesting 
clusters not 
discovered;
large variance
of clusters

K-means does poorly – great confusion of clusters
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CONN vs mU-matrix for identifying SOM clusters  -
effect on real data of moderate complexity

Rare clusters, hard to separate from 
this representation 

Modified U-matrix 

Clusters obtained from an 
40 x 40 SOM

Clear separation of rare clusters 
from other clusters

C V

a

g

CONNvis

Data: Ocean City, Maryland
Daedalus AADS 1260 scanner

bands 3 – 10 used
(Csathó, Krabill, Lucas and Schenk, 1998)

Taşdemir & Merényi, IEEE TNN 2009
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ALMA hyperspectral image of HD 142527

ALMA: Atacama Large Millimeter Array

Artist’s concept of planet 
formation in HD 142527

Data credit: JVO, project 2011.0.00318.5

66 dishes at ~ 5,500 m

170 channels: C18O, 13CO, CS lines stacked
Spectral resolution: 0.122 MHz

Sample image planes from ALMA Band 7, HD 142527

329.299-329.305GHz 330.555 – 330.564

Ch

342.850-342.856

1 50 51 120 121 170

ALMA spectra from combined C18O, 13CO, CS lines, 
showing differences in composition, Doppler shift, 
temperature (Data credit: JVO, project 2011.0.00318.5) 
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Data and connectivity statistics
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ALMA 20 x 20 SOM

Passport, ALMA data
# vectors
# dim
# clusters
Noise
Similarity
# V neighbors
# R-local            

5,625
170
? (many)
Moderate
Variable
17
2

Passport, 6d 8-class data
# vectors
# dim
# clusters
Noise
Similarity
# V neighbors
# R-local            

16,386
6
8
Moderate
High
20
2

15 x 15 SOM
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Clusters from 20 x 20 SOM of ALMA image

Prototypes in the lower
left corner

The clusters shown in the disk 

The extracted clusters in the SOM

CONNvis

Center detail



Knowledge Discovery from the Hyperspectral Sky 26
E. Merényi, Rice U
erzsebet@rice.edu

Thanks: Al Wootten
Data Credit: JVO Project Code 

2011.0.00318.5 

SOM clusters from 170-channel 
hyperspectral cube of protostar

HD 142527   

Coloring is arbitrary, not a 
heat map.

Simultaneous
CS, 13CO, & C18O

SOM clusters of HD 142527
First-cut hyperspectral analysis of ALMA data compared to Casassus et al. (2013) 

SOM clusters
• capture general Doppler 

structure found in single-
species lines.

• incorporate line intensities, 
widths, shapes, et cetera, as 
well as Doppler.

• contain more structure than 
single-line analysis, and more 
than can be shown here.

.

Single-line Doppler 
CO & HCO+

Extracted from: Casassus, et al., 
2013, Nature, 493,191.
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Mean cluster spectra

C18O 13CO              CS
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Layered Knowledge? 

Superimposed cluster maps
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Conclusions

 SOMs are powerful for structure discovery in complex data
 The CONN(ectivity) similarity metric improves the segmentation 

of prototypes compared to distance-based metrics

 ALMA hyperspectral data cubes – a new type of complexity 

 Showed intricate structure identified in ALMA data 

 Emerging structure makes good sense, but it is also more 
complex than CONN seems to capture from the SOM

 Motivates further development of metrics & visualization

 New types of astronomy data can present surprises we may 
not be ready for and will provide exciting opportunities for CI 
and ML research. 
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Thank you

This one?      Or this?
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