

Discovery Channel Telescope

Tom Bida DCT Project Scientist Lowell Observatory

16 November 2006

Ground-Based O/IR System Workshop

DCT Background and Progress

1995 Next Generation Lowell Telescope (NGLT) under consideration

Initial optical studies & site testing

2003 Lowell-DCI partnership formed

- NGLT becomes DCT
- Project office established and staffed
- Mirror blanks ordered

2004 Concept Design Review

- Review overall design
- Reduce cost and risk, but retain capability

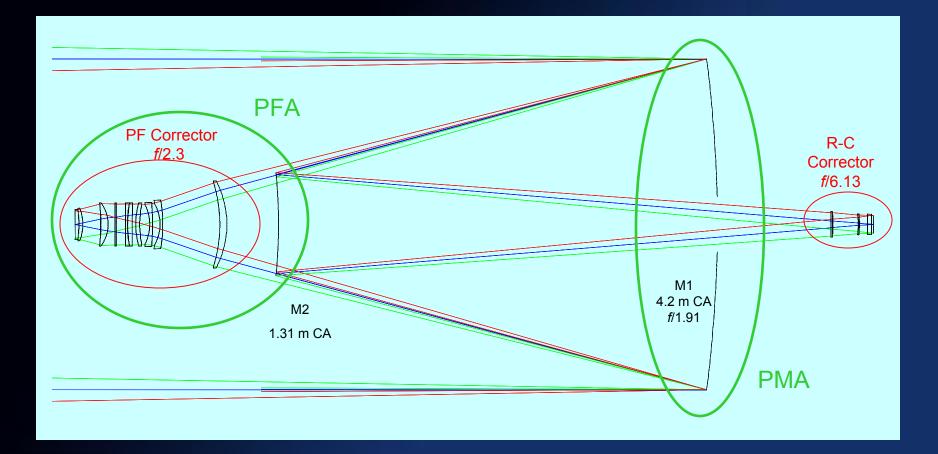
2004 Site development begun

- USFS use permit issued
- Access road and site preparation
- Formal groundbreaking

2005 Facility construction started

- Foundations and structural steel
- Shell and interior

2005 Primary mirror blank completed2006 Primary mirror figuring startedBase facility completion



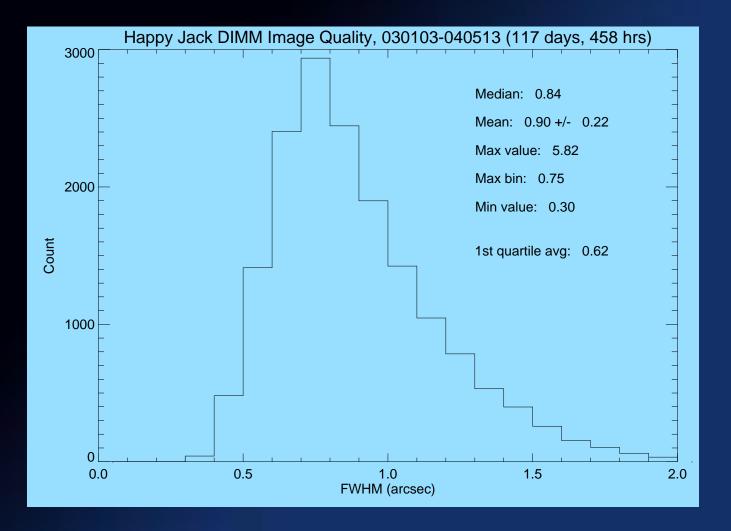
Optical Specifications

<u>Parameter</u>	Prime Focus	<u>Ritchey-Chrétien Focus</u>	
Clear Aperture	4.2 meters	4.2 meters	
Effective f/ratio	2.3	6.1	
Central obscuration	11%	13%	
Linear Field of View	2 degrees	30' unvignetted	
Image scale (15 μ pixel)	0.32 "/pixel	0.12 "/pixel	
Image Quality	0.38" FWHM	0.29" FWHM	
ADC	Included	Optionally removable	
UV cutoff	360 nm	300 nm (without ADC)	

Optical Configuration

Imaging Survey Telescopes

Telescope	Diameter	Collecting Area	Solid Angle FOV	AΩ	First Light
	(m)	(m²)	(deg²)	(m²deg²)	
WIYN/One Degree Imager	3.50	9.6	1.0	9.6	2009
CFHT/Megacam	3.6	10	1	10	
Subaru/Suprimecam	8	50.2	0.25	12.6	
Palomar/Quest	1.2	1.1	16.6	18.3	
Blanco/Dark Energy Camera	4.00	12.6	2.2	27.6	2009
MMT/one-degree camera	6.5	33.2	1	33.2	
Lowell/DCT	4.20	13.9	3.1	42.9	~2010
Pan-STARRS	4x1.8	10.2	7.0	71.3	2007+
Subaru/Hyper-Suprime	8.20	52.8	2.5	132.0	~2009
LSST	8.40	55.4	10.0	554.2	~2012


Mechanical Specifications

Parameter Operating azimuth range Operating zenith angle range Maximum slew rate **Retargeting Time** Pointing error Pointing stability Non-sidereal object track rates Guiders Prime/RC focus selection Nominal RC focus payload

Specification $\pm 270^{\circ}$ $0.4^{\circ} < Z < 85^{\circ}$ 3°/sec < 6 sec for 2° move < 2'' rms< 0.1" jitter w/ 0.1"/min drift > 5"/sec Non-sidereal capability Interchangeable top end 1500kg Cassegrain 3000kg x2 Nasmyth 200kg x4 Bent-Cass

Happy Jack Site: Image Quality

Facility Construction

Site Work Completed June 2005

Access road & telescope site preparation

Formal Groundbreaking July 12, 2005

Concrete, Steel, & Metal Bldg contract awarded August 2005

- Foundations & structural steel
- Complete metal building shell
- Currently near completion

Trenching contract awarded Sept 2005

- Power and communication conduits
- Completed January 2006

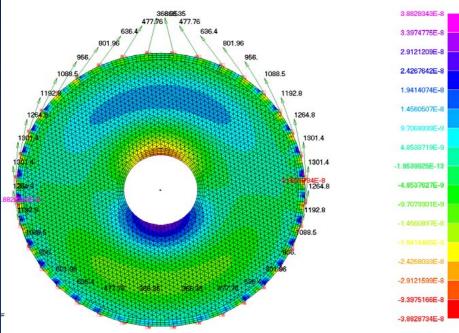
Completion contract awarded May 2006

- Complete telescope building shell
- Install plumbing, mechanical, & electrical


USFS Shop Building contract awarded June 2006

DCT Facility, September 2006

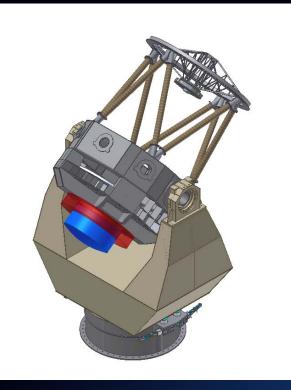
DCT Primary Mirror Blank: 4.3m ULE



Primary Mirror Blank Final Figuring and Polishing

 Awarded to University of Arizona, Optical Sciences Center Contract interval: August 2006 – August 2009

Active optics system development integral to this effort: 120 axial, 36 lateral, 3 tangential supports. Active optics control can be tested in polishing support and test fixture.



DCT Mount Development

RC Configuration

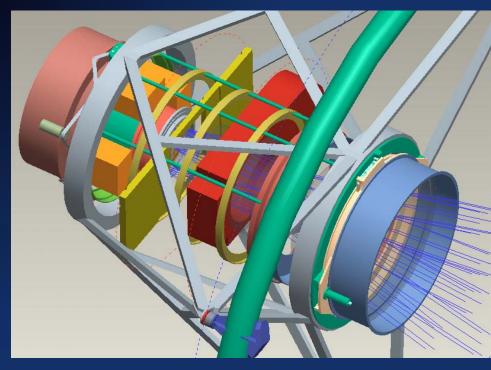
 Secondary mirror on lightweight support, improving obscuration and infrared contrast.

 Support for Nasmyth and Bent-Cass instrumentation

Prime Focus Configuration

• RC and PFA top ends are interchangeable, swapped with dome crane in day shift

• Phase II (pre-PDR) study complete


Prime Focus Assembly

Phase II study at Goodrich EOS, 2005:

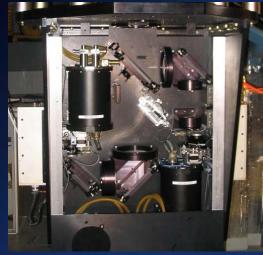
- Eliminate tumbling top-end design
- Relax optical requirements
 - Median image quality was 0.89", is 0.92"
 - U-band requirement relaxed
 - Allows better selection of lens materials

Design results

- Meets image quality requirements, with
 5 rather than 7 elements, and 2 fewer
 aspherical surfaces
- ADC is now tip-tilt of single element
- Retains UV performance
- Improved throughput
- Allows conventional shutter
- Rotating filters
- Reduced cost ~\$2M

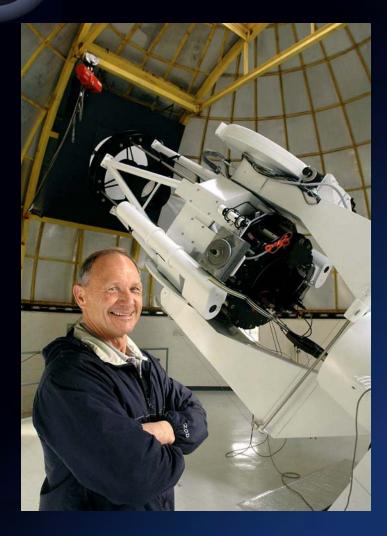
Lowell Instrumentation Facilities

- Laboratory and machine shop facilities: 4000 sq ft
- 3-axis CNC mill, lathes, wood and welding shops
- Class 10000 clean room for detector and optical work
- LOIS: Lowell Observatory Instrumentation System

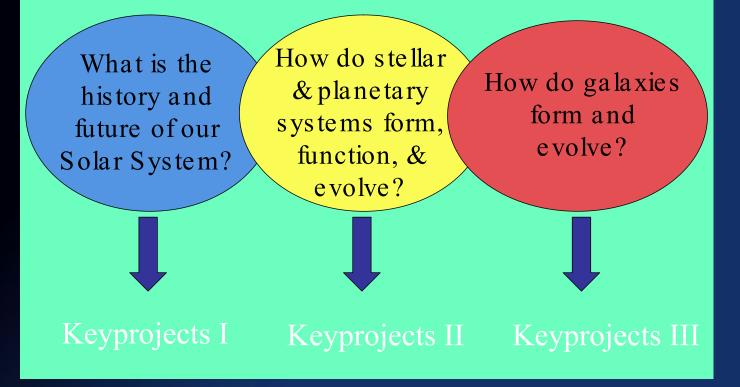


Lowell Instrumentation Development

HIPO: High-speed Imaging Photometer for Occultations, SOFIA 1st-light instrument. PI: Ted Dunham



Lowell Instrumentation Development



42" Hall Telescope

DeVeny Spectrograph

COURT GRANNEL TELESCOPE

The DCT Science Mission

DCT Instrumentation

Instrumentation Plan Enables Key Projects in the DCT Science Mission

- RC Configuration at First Light:
 - High-resolution 8k x 8k CCD camera
 - DeVeny low-resolution optical spectrograph
- 2nd Development Phase:
 - Wide-field prime focus capability
- 3rd Development Phase:
 - Implement Nasmyth focal stations
 - High-resolution optical spectrograph

