Steward Observatory

- Part of University of Arizona (UA)
- Serves Scientists at UA, ASU, NAU UMinn, UVa
- Operates telescopes on Mt. Graham, Mt. Hopkins, Kitt Peak and Mt Lemmon

Steward Observatory

- Strongly supports TS approach for US astronomy because:
- Over 80% of collecting area is operated by independents.
- TSIP resources will improve instrumental capability and community access.
- TS permits NSF to leverage large nonfederal investments in astronomy.

Major SO O/IR Telescopes

MMT (Mt. Hopkins)

Partner: Smithsonian; Director: Faith Vilas 6.5m f/1.25 BSH primary; f/5, secondaries f/9 and AO f/15. Arizona share: 50%

Magellan (Las Campanas) Two 6.5m telescopes; f/1.25 BSH primaries; operated by OCIW. Partners: Carnegie, Harvard, MIT, Michigan, Arizona (10%). Discussed by OCIW representative.

 Large Binocular Telescope (Mt Graham) Partners: Italy (INAF); Germany (LBTB), Ohio (OSU); Research Corp. (UMin, UVa, NDU); Director: Richard Green; Arizona share 25%;

All available through TSIP

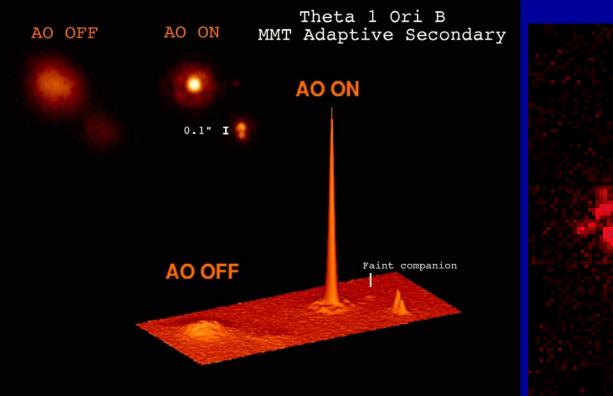
Smaller SO Telescopes

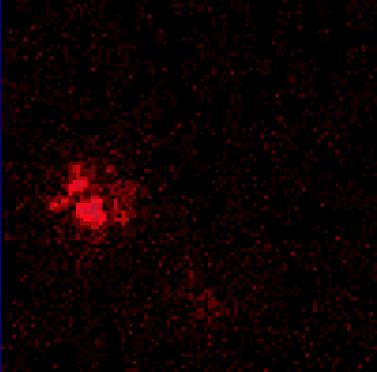
- Bok 2.3m -- 90Prime (1 degree field)
 B+C Spectrometer
- VATT 1.8m -- 4Kx4K CCD Imager (25%)
- Kuiper 1.5m -- 4Kx4K CCD Imager
- ML 1.5m -- PI Instruments

All available for System Use: PI instruments welcome.

Original MMT on Mt. Hopkins with six 1.8-m mirrors – Dec. 1981

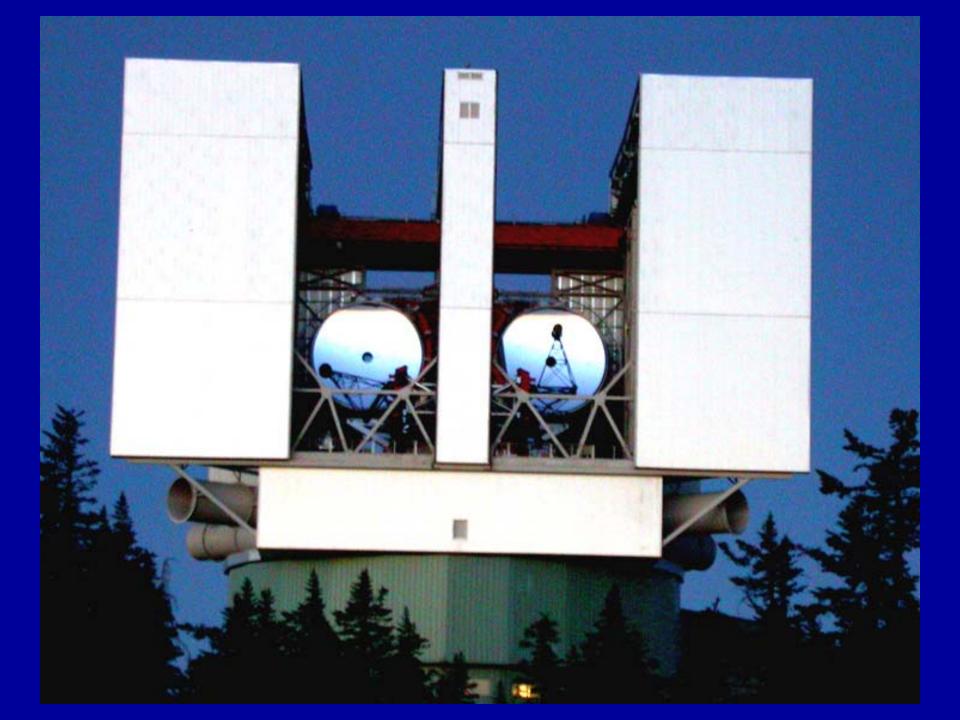
MMT Instrumentation


- F/5 MegaCam; Hectospec; Hectochelle. *Maestro; Binospec*.
- F/9 Dual Channel Spectrograph
- F/15 Adaptive Secondary* (336 actuators) ARIES (Cam.); MIRAC; CLIO; ARIES (Spectr); IRIS
- * Unique capability



Final adjustments to AO by F. Wildi & L. Close...

First NIR AO science from the adaptive secondary: TheTheta Ori B mini-cluster



Close et al. 2003

Large Binocular Telescope

- Binocular: Two 8.4-meter mirrors, f/1.14
- Equivalent circular aperture: 11.8 m (39 ft)
- Interferometric baseline: 22.8 m (76 ft)
- Angular Resolution: 0.010 arc sec at $\lambda \sim 1 \mu$
- F/15 Adaptive Secondaries
- First light: October 2005
- Dual mirror operation expected: Fall 2006

LBT Instruments

Individual Focus Instrument Pairs

- LBC Red/Blue Optimized Prime Focus Cameras (Italy)
- MODS Optical Multi-object Spectrometers Each with red/blue optimized channels (Ohio)

Lucifer

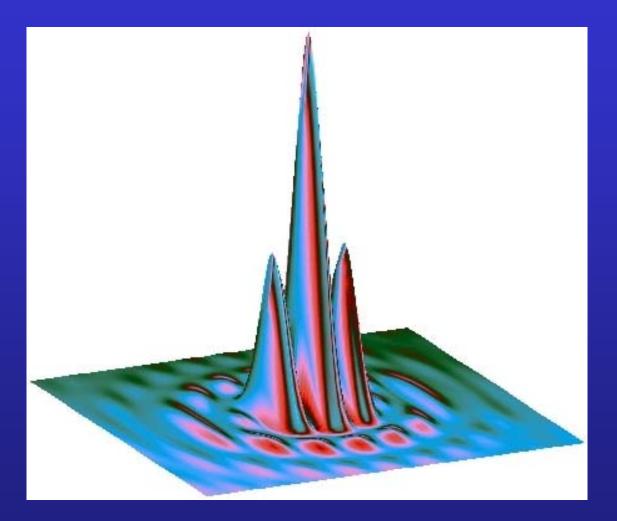
NIR Seeing/Diffraction Limited Imager/Spectrometers with multiobject capability (Germany)

LBT Adaptive Optics

- Prototype implemented at MMT with 336 actuators.
- LBT adaptive secondaries f/15, 911 mm diameter, 1.6 mm thickness.
- 672 voice-coil actuators, operating at kHz rates
- Engineering shell delivered to Italy August 2005. First scientific shell figured, thinned, deblocked.
- Processing, integration and test plan calls for return to Mt. Graham in late 2007.
- 2007/8 will see the installation of first Gregorian instruments.

Adaptive Secondary Shell

LBT Instruments (cont.)


Combined Focus Instruments

- LBTI Thermal IR (2-20 microns) with Fizeau imaging and Nulling capability. (Arizona, RC partners)
- LINC Near IR (1-2 microns); extension to MCAO capability. (Germany, Italy)

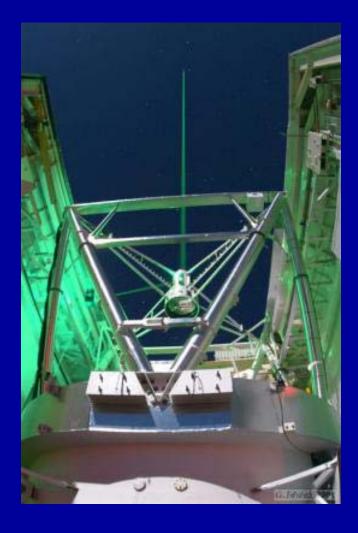
PI Instrument

 PEPSI High resolution fiber spectrometer (Potsdam)

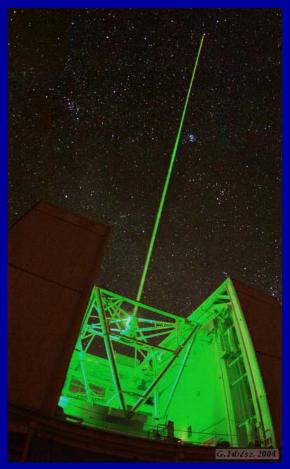
LBT Point-Spread Function.

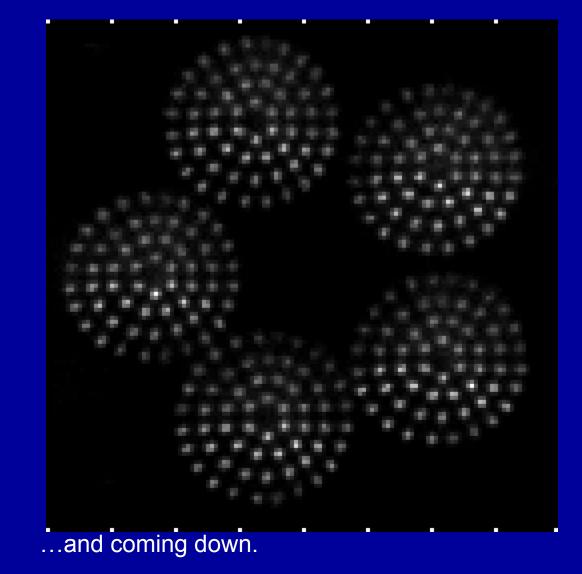


With 22.8-m aperture, res ~ 0.0088' at λ = 1 μ


SO Instrument Plans

- Continue with partners to implement current instrument plan for MMT and LBT;
- Install adaptive secondary at Magellan;
- Further develop multi-beam Rayleigh laser systems and implement at the MMT and LBT.
- Avoid too many instruments on any single telescope. Not cost effective.


Multi-beam Rayleigh Lasers


- (Above) Laser projected from 61 inch onto bottom of cloud. Note layers of sub-visible cirrus lit up and higher-order diffraction from hologram that splits one beam into 5 (80% of power goes into the "real" spots).
- (Right) 5 beams, 5 W each, projecting from MMT.

Five lasers at the MMT

The laser beams going up...

Steward Observatory

- Participates in and supports the TS;
- Believes along with the SR that expanded funding is needed for TSIP (~\$7M); AODP (~\$5M); ATI (~\$10M);
- Supports SR recommendation that smaller telescopes be incorporated in TS as needed;
- Recommends actions that stimulate continued private investment in US astronomy. Delicate balance for TS.