Institute for Astronomy

Instrumentation Capabilities and Recent Projects

Klaus Hodapp

for the IfA Instrumentation Division

The distributed IfA

Haleakala High Altitude Observatory Site

Institute for Astronomy

SOUTH ELEVATION

- 280 staff, 80 scientists
- 40 tenure track faculty
- 35 PhD students
- 1000 undergraduate students/yr in Manoa
- 2 observatory sites: Mauna Kea and Haleakala
- base facilities distributed over 3 islands

IfA Technical Staff

- 7 Instrument P.I.s
- 4 Project Managers
- 6 Mechanical Engineers
- 12 Electronics Engineers
- 4 Software Engineers
- 6 Machinists
- 18 Technicians

The IfA technical staff is organized in the JOS system, allowing flexible assignment to projects.

IfA Expertise

- Infrared Detector Arrays (Hall, Hodapp, Onaka, Rayner)
- Optical CCDs (Tonry, Luppino)
- Controllers (Onaka, Hall, Tollestrup, Jacobson, Sousa)
- Wavefront Sensors (Tonry, Chun, Hodapp, Hall)
- Optics (Rayner, Hodapp, Kuhn, Lin)
- Curvature AO Systems (Ftaclas, Chun)
- Cryo Mechanisms (Tokunaga, Rayner, Hodapp)
- Site Testing (Chun)
- Telescope Operations (2.2m and IRTF) (Tokunaga, Tollestrup, Aspin)
- Data Processing, Pan-STARRS (Magnier, Heasley, Jedike, Chambers)
- Observing Condition Forecast (Businger)

HAWAII Heritage

On-chip butting

Reference pixels

Guide mode & read/reset opt.

Stitching

HAWAII - 1

1994

1024 x 1024 pixels
3.4 million FETs
0.8 µm CMOS
18 µm pixel size

HAWAII - 2 1998

2048 x 2048 pixels 13 million FETs 0.8 µm CMOS 18 µm pixel size **HAWAII - 1R** 2000

1024 x 1024 pixels
3.4 million FETs
0.5 µm CMOS
18 µm pixel size

HAWAII - 1RG

2001

1024 x 1024 pixels
7.5 million FETs
0.25 µm CMOS
18 µm pixel size

HAWAII - 2RG

2002

2048 x 2048 pixels 29 million FETs 0.25 µm CMOS 18 µm pixel size

HAWAII - 4RG Family

2004

4096 x 4096
120 million FETs
0.16 μm CMOS
15 μm pixel size

8192 x 8192 420 million FETs 0.25 µm CMOS 9 µm pixel size Smaller pixels, Improved flexibility & performance, Scalable resolution

UH NICMOS-3 Camera (1990) NASA

QUIRC (HAWAII-1) (1994) AFRL

Ultra-Low Background Test Camera (ULB), 2003, NASA P.I. Don Hall

Rockwell Sidecar ASIC (D. Hall, NASA funding)

UH Wide Field Imager (UHWFI) with upgraded UH 8K CCD (K. Hodapp, G. Luppino, NSF ATI funding)

Pan-STARRS Development Schedule

Development, infrastructure, and testing (2003-2006)

Pan-STARRS1

(2006-2009)

360 Mpix

Test Camera 3

Gigapixel Camera 1

- Pan-STARRS3
- Pan-STARRS4

Gigapixel Camera +

5.5 *Gpix*

Orthogonal Transfer CCD

• Orthogonal Transfer CCD

Pixel design which can noiselessly remove image motion at high speed (~10 μs)

Normal guiding (0.73")

OT compensation (0.50")

Frontside Orthogonal Transfer Array (OTA)

OTA Quantum Efficiency

- OTAs demonstrate expected QE (-65°C)
 - 45μm thick device is virtually identical to CCID20
 - 75μm thick device has 50% enhanced QE at 1μm

Test Cryostat #1 and Test Bench

- Workhorse for OTA testing, completely automated
 - Server architecture interfaces to multiple clients
 - Simultaneously tests 4 devices
- Computer scripts exhaustively explore parameter space

Test Camera 3 (TCS3)

Pan-STARRS Gigapixel Camera

Pan-STARRS Curvature Wavefront Sensing

- Curvature sensing design
 - 2—4 locations, above focal plane but outside 3 deg FOV
 - Converging lens and block of calcite
- Two images of every star provide above and below focus donuts
 - Difference is quite sensitive to wavefront aberrations
 - Operates automatically and continuously with every exposure, no special pointing or overhead.
 - Results available within 30 sec.

Pan-STARRS SH Wavefront Sensing

- Deployable WFS located in antechamber of camera extends out over focal plane to pick off a star for analysis
- Lenslet images and pupil images are parfocal with normal telescope images
- S-H sensor parked out of field of view for normal operations

Near-infrared Imager (NIRI)

Geiger APD Sensor Architecture

Four main parts

- 1) Photon detection
- 2) Avalanche amplification (pulse generation)
- 3) Pulse discrimination
- 4) Photon counting and readout circuitry
- CMOS circuit used for (3) and (4)
- For (1) and (2) two options:
 - Part of CMOS circuit
 - Put APD into detector material and hybridize to CMOS circuitry

Curvature Adaptive Optics at the IfA (C. Ftaclas, M. Chun)

Systems and Components

Curvature AO Components: Deformable Mirror

Minimum Bend Radius = 10m Resonant Frequency > 680Hz Bimorph Edge Benders Front Focus Electrode

Curvature AO Components: Lenslet array

Fiber Coupled Achromatized 0.4 to 1 micron

IRTF Instruments: CSHELL (A. Tokunaga), SPEX (J. Rayner), and NSFCAM-2 (E. Tollestrup)

Funded by NSF ATI

Large Cryogenic Mechanisms: NIRI Focal Plane Mask Wheel

Infrared Camera and Spectrograph (IRCS) for Subaru (P.I. A. Tokunaga)

Studies of the boundary layer (M. Chun)

Current activities: Ground-layer characterization (M. Chun)

- New optical turbulence profiler based based on the correlations of the optical wavefront gradients and amplitude fluctuations from double stars.
- Collaboration with University of Durham and UNAM
 - SLODAR: Slope detection and ranging
 - LOLAS: Low-layer SCIDAR.

Mauna Kea Observing Condition Forecast (S. Businger, UH Meteorology)

