

NOAO Facility Strengths

- Mayall and Blanco = Wide Field, Natural Seeing, Broad λ: Mosaic's, NEWFIRM, DEC (coming
- WIYN = Wide field, with tip-tilt correction: WTTM+WHIRC, QUOTA ⇒ ODI
- SOAR = Narrower field, good-toenhanced image quality: Single object spectroscopy, optical & IR; GLAO (coming)
- SNe, Galaxy evolution, Stellar populations, Star & planet formation

Gemini Facility Strengths

- IR Sensitivity: NIFS, NICI, GNIRS
- High Spatial Resolution: Altair, NIFS, NICI, MCAO (coming), GPI (started)
- Faint Object, multiplexed spectroscopy: GMOS
- Exoplanets, Star & Planet formation, Brown dwarfs, Galaxy evolution

Selection Processes

- Gemini: Workshops (e.g., Aspen) lead to studies, which lead to RFP's and bids
 - Gen-1 both solo and partnership
 - Gen-2 proposals all by partnerships
 - Strengths: all those of entire community

NOAO:

- System Workshop(s) identify priorities
- Partners contribute resources + ideas: SAM,
 NEWFIRM, ODI (NB: Mosaic's were last "on our own")
- Strengths ...
- Internal discussions begun re: "what next?" …

NOAO strengths: Opto-Mechanical Design, Fab, Testing

NOAO Strengths: Controllers and Detectors

NOAO Strengths: GLAO

SOIREE: Single Object O/IR Extremely Efficient spectrograph

Efficiency gains from:

- VPH gratings
- Modern dichroics
- Optimized coatings, detectors

- $0.35 < \lambda < 1.6 \mu m$
 - Kmore costly but possible
 - Cool how much for λ range?
- R~3000
- Throughput > 30%
- Rapid faint-object acquisition (slit-viewing guider? New TCS?)
- Use O & IR modes together or separately; 3+ channels
- Slit length ~ 1'
 - ADC? Need trade study
 - N&S? 'scope or internal?

SOIREE Science highlights

- Redshifts of rare/variable targets where wide wavelength coverage is required
 - GRBs, high z QSOs, core collapse SNe
- Reverberation mapping of QSOs
 - continuum and broad lines
- Redshifts where spectrum breaks ~1μ
- SN and CV spectrum monitoring
- Spectra of L,T,Y brown dwarfs

4CES: <u>4</u>-meter <u>Cryogenic</u> <u>Echelle Spectrograph</u>

Schematic of an accretion disk around a T Tauri pre-main sequence object

- 1 < λ < 5 μm
- *R* ~ 50,000
- Slit 0.8" x 15"
- High Throughput
 - Si immersion grating
 - Single 2k x 2k array
- IR slit-viewer for acquisition & guiding
- Minimize modes,
 parts = minimize cost

High Spectral Resolution near- IR Science

- Origin of elements of life
- Physics of star formation regions
- Accretion disks
- Chemistry of the ISM, especially H₃⁺
- Masses for very low mass stars
- Astrochemistry of elementary life molecules, C₂H₂, HCN, ...
- Flows in circumstellar envelopes
- Unique ISM, PN diagnostics: H₂, forbidden lines,...
- Magnetic fields, rotation, Doppler imaging,...

The Yin and Yang of 3-8 meter instruments

of magnitude gain rank well.	Instruments offering an order
	of magnitude gain rank well.

New technologies spawn new instruments.

Niche instruments may have "killer app" but still attract limited support.

No guaranteed funds for new instruments in a flat budget.

Expensive instruments have enormous inertia.

New technologies increase risk.

General purpose capabilities attract universal support but lack "killer app".

Good ideas attract funding.