Local Group: Searching for the Origins of Stars, Planets, and Life

Michael R. Meyer
Steward Observatory
The University of Arizona

The Origins of Stars, Planets, and Life...

- What is the initial mass function of stars and substellar objects?
- What physical variables control the assembly of stars?
- Are planetary systems like our own common or rare in the Milky Way?
- How do elements evolve into complex organic molecules that could give rise to life?

The "Black Cloud" B68 (VLT ANTU + FORS1)

Tearing Away the Cosmic Veil: Infrared Imaging and Spectroscopy

Seeing Through the Pre-Collapse Black Cloud B68 (VLT ANTU + FORS 1 - NTT + SOFI)

Measuring Gas Phase ISM Abundances:

First detection of H3+ and H2 in same source (Phoenix at KPNO) Courtesy Craig Kulesa (U. Arizona)

Aromatic emission features (PAHs) 50 PAH PAH 40 (+PAH?) PAH PAH PAH 30 20 10 M 82 - SWS 12 14 Wavelength (µm)

Courtesy Kris Sellgren.

$2.4 - 45 \,\mu m$ spectrum of interstellar ices

Follow the carbon...

Kinematics and Chemistry of Collapsing Protostars

Yorke & Bodenheimer (1999)

Herbig Haro 212 in Orion

H. Zinnecker et al. H2 Emission from the VLT. Kinematics required!

Spitzer Space
Telescope
3.6-8.0 µm
Images of
Protostars
In NGC 1333

LBT-I can study Forming Protostars with *HST Resolution* in the Thermal IR

~1 arcmin diameter. OSCIR @ N-band UFL on 3-4m

Andersen, Meyer, Oppenheimer, Dougados, and Carpenter (2006)

Pre-Main Sequence Stellar Astrophysics Machine

- •Rotational Properties (vsini)
- •Magnetic Field Strength (Zeeman splitting)
- Accretion Rates (Brackett Line Profiles)
- •Cluster Kinematics (radial velocities)
- •Fundamental Parameters (Teff, log-g, abundances)
- •Courtesy K. Covey (U. Washington/CfA)

From Active Accretion to Planetary Debris Disks...

Images courtesy of K. Stapelfeldt, P. Kalas, and NASA.

Gas-rich disk ~ 1 Myr old

Solar system debris disk 4.65 Gyr old!

Blackbody Disk with Dynamically Cleared Gap

Diversity in Primordial Disks: Masses and Lifetimes

Haisch etal. 2001; see also Hillenbrand (2002).

Warm Gas disk lifetimes appear to be < 10 Myr.

=> No gas rich disk (> 0.1 Mjup) detected.

Spitzer IRS 11-37 um

Hollenbach et al. (ApJ, 2005); Pascucci et al. (2006).

Science of the Cold and Slow: Ground-based Mid-IR Echelle Wins!

TEXES on Gemini Lacy et al. (2006); Richter et al. (2004)

Gas content as a function of radius and age.

Velocity resolved CO emission at 4.7 microns from Blake and Boogert (2004)

Spitzer Observations of Warm Debris Frequency Around Normal Stars: Clues to Terrestrial Planet Formation?

Meyer et al. (in preparation).

Resolved Spectroscopy of Debris Surrounding Sun-like Stars

Beichman et al. (ApJ, 2005); Song et al. (Nature, 2005); Weinberger et al. (2003); Telesco et al. (2004).

Direct Detection of Planets: The Problem

Direct Detection: Show me a planet!

NACO/VLT (Chauvin et al. 2004).

Direct Detection: Current State of the Art.

MMT-AO with CLIO Courtesy Phil Hinz (Kenworthy et al. 2006).

Direct Detection: Current State of the Art.

MMT-AO with CLIO/VLT with NACO

Courtesy Daniel Apai (see also Heinze et al. 2006).

No Natural Guide Stars in Key Dark Cloud Targets, But *Tip-Tilt Stars Available*.

NOAO 1.3 meter SQIID (1990): I. Gatley, R. Probst.

NICMOS/HST Mosaic F810W/F110W/F150W of NGC 2024 (Liu, Meyer, Cotera, and Young 2003, AJ).

Near-IR Spectra can Distinguish Candidate *Planetary Companions*from Background Stars

Chauvin et al. (2005) McLean et al. (2003)

ESO PR Photo 26a/04 (10 September 2004)

H-R Diagrams for *Planetary Mass* Objects in NGC 1333

Greissl, Meyer, Wilking, Fanetti, Greene, Scheider, Young (2006)

Star Formation Rate of the Universe?

Assumes a Salpeter IMF that is constant in time!

Bouwens and Illingworth (2006) astro-ph/051069

Milky Way Cluster Westerlund 1

The Super Star Cluster Westerlund 1 (2.2m MPG/ESO + WFI)

VLT NACO Observations: Andersen et al. (2006)

IFU Spectra of GC Stars, 75 mas resolution

IFU Spectra of Stars With 75 mas resolution

IRS 16SW in the Galactic Center: radial velocity curve from He I line

Courtesy Kris Sellgren.

Extreme Star-Formation in NGC 604 in M 33 at 1 Mpc

Galaxy NGC 253

Hubble Heritage

Johnson et al. (2001)

Capabilities Needed in the System:

- 1) Cross-dispersed echelle spectrographs in NIR at R > 30,000 and mid-IR at R > 50,000 required on 6-10 meter telescopes.
- 2) Multi-object near-IR spectroscopy 2-4 arcminute fields at R.>2000 required for characterization of young stellar pops (OH fibers with GLAO?). R > 10,000 would provide tremendous break-through in PMS Astrophysics (6-10m).
- 3) Diffraction-limited thermal IR imaging/spectroscopy (0.5-2') on 6-10m probes the initial conditions with resolution comparable to HST and enables compositional studies of disks where planets form.
- 4) All-sky adaptive optics required for high spatial resolution imaging/spectroscopy of unique objects (6-10m).
- *5)* High contrast imaging (> 10^{-7}) for debris disks and planets.

Capabilities Needed in the System:

- 6) Near-IR spectral imagery of star clusters in nearby galaxies over 2-20 arcsecond FOV will enable determination of the IMF down to solar mass stars in regions of extreme star formation (LBT-I).
- 7) MOAO targets of < 1" over 1-2' fields of view of interest (6-10m).
- 8) Wide-field narrow-band imaging in OIR (2-4 meter).
- 9) Acquisition of OIR photometry of bright sources using 1-2 meter telescopes as well as R > 500 spectra for variable sources crucial.
- 10) Synoptic monitoring programs with 1-2 meters in UBVRIJHK can yield valuable insights into processes of star and planet formation.

Strategies for Success?

- Community access to OIR facilities is a fundamental principle of the system.
- Public/private partnership can create a whole greater than the sum of the parts (avoid redundancy).
- Universities can provide innovation in instrumention, and training opportunities for students.
- National Centers can provide base capabilities (standard data products of high quality) and portals for community access to rest of system.
- Future investments in programs of scale require flexibility during development, buy-in from entire community, and commitments for life-cycle costs.