Wide-Field Photometric Survey of Young Southern Open Clusters

Jeffrey D Cummings

Center for Astrophysical Sciences

Johns Hopkins University

March 13, 2015

Jason Kalirai (STScI), Pier-Emmanuel Tremblay (STScI),

Douglas Geisler (UdeC),

Francesco Mauro (UdeC) & Constantine Deliyannis (Indiana)

Overview

- Quickly and deeply surveyed 12 young and nearby open clusters.
- Open cluster parameters and IMF.
- The foundation for follow up spectroscopy to analyze white dwarfs and cluster MS stars.

DECam Observations

- Observed 12 open clusters in ugriz with 1 field each.
 - Nearby (< 1 kpc; span ~0.5 to 2 degrees)
 - Young (< 250 Myr)
- Shutter accurate to ~2 ms; o.1 second exposures.
 - Saturating only stars brighter than V = 6 to 7.

Separating the Field

- We are given an "off-field" for free.
- Statistical field subtraction plus comparisons across multiple colors.

Cluster Parameters

- u provides strong sensitivity to both reddening and metallicity.
- Use multiple color-color diagrams and CMDs to derive cluster parameters and IMF.

Massive White Dwarfs in Clusters

- White dwarfs in clusters provide an invaluable tool to analyze evolution and integrated mass loss of their progenitors.
- No known cluster white dwarfs with mass > 1.1 M_{\odot}
- No empirical initial final mass relation (IFMR) at high mass.

~35 Years of IFMR Work

- Many difficulties remaining:
- Large scatter

- Limited numbers in key regions

Salaris et al. (2009)

IFMR Applications

- Minimum mass of Type II SNe.
- Predicting Type Ia SNe rates.
- Stellar feedback and evolution in galaxies.
- Stellar core mass evolution.
- Understanding white dwarf populations
 - luminosity function
 - mass distribution.

SDSS DR7 (Tremblay et al. 2014)

In Search of the Faint and Blue

- High mass white dwarfs form rapidly (~50 Myr) but also cool rapidly.
- More likely to be ejected.
- Nearby and young clusters provide bright and high mass white dwarfs.

AAOmega Spectrograph

- 2 deg FOV
- 392 fibres
- Red & Blue beams
- Good blue sensitivity
 below 4000 Å

Summary

- Field Correction
- Derive cluster parameters & IMF
- Search for massive white dwarfs (> 1 M_{\odot})
- Further analyze cluster [Fe/H] and Li abundances with MS stars.