The Detailed Substructure of the Milky Way: Stellar Streams: DECam Imaging of the Eastern Banded Structure

Collaborators
Beth Willman (Haverford)
Brian Kimmig (Haverford)
Nelson Caldwell (Harvard/CfA)
Matt Walker (Carnegie Mellon)
Jay Strader (Michigan State)
David Sand (Texas Tech)
Carl Grillmair (Caltech/IPAC)
Joo Heon Yoon (UCSB)
Ross Fadely (NYU)

Jonathan R. Hargis
Haverford College
@jrh_astro

CMD filtered and smoothed surface density map of the EBS region (data from Grillmair 2011)
What can stellar streams tell us about the Milky Way in a cosmological context?

Streams trace the hierarchical nature of galaxy formation and the assembly of the Galactic halo

- Stream orbits probe the Galactic potential out to large galactocentric radii
- Identifying stream progenitors informs our understanding of the relative contribution of various objects to the halo’s formation
- Spatial morphology of streams may contain signatures of the numerous dark subhalos predicted by LCDM

LCDM simulation of a Milky Way-like galaxy showing the stellar streams created from tidal destruction of accreted dwarf galaxies (Bullock & Johnston 2005)
What can stellar streams tell us about the Milky Way in a cosmological context?

Streams trace the hierarchical nature of galaxy formation and the assembly of the Galactic halo

- Stream orbits probe the Galactic potential out to large galactocentric radii

- Identifying stream progenitors informs our understanding of the relative contribution of various objects to the halo’s formation

- Spatial morphology of streams may contain signatures of the numerous dark subhalos predicted by LCDM

What are the progenitors of the known stellar streams? How do dwarfs and globular clusters contribute to halo assembly?

At present: Only ~3 stellar streams have known progenitors. Most streams have no identifiable progenitor.

Numerical simulations of subhalo + stream encounters in Pal 5 by Yoon et al. (2011)
The Eastern Banded Structure (EBS)

Filtered and smoothed surface density maps from Grillmair (2011)

Photometry:
DECam gri
1080 s per pointing

Spectroscopy of Hydra I:
MMT + Hectochelle
700 MSTO stars
[selected from SDSS!]
RV errors < 5 km/s

Filtered and smoothed surface density maps from Grillmair (2011)
DECam Data Analysis and Photometric Calibration

NOAO CP Image Reduction
 +
Python/DAOPHOT photometry pipeline

Calibrate each image directly to SDSS using ML analysis:
 → Color terms + ZPs for each image
 → Only (g-r) < 1

Examine residuals as a function of magnitude, color, focal plane position, chip

What We Learned:
 • Reject low S/N SDSS stars
 • Use well-measured DECam point sources
 → Should mitigate brighter/fatter in the calibration...?
DECam Photometric Calibration

1) Quality cut the raw photometry
2) Match these to SDSS
3) Reject outliers to increase robustness of calibration
Color-Magnitude Diagram: **Hydra I region**

DECam (180 s exposure)

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

g - i (mag)

17 18 19 20 21 22 23

g (mag)

17 18 19 20 21 22 23

SDSS

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

g - i (mag)

17 18 19 20 21 22 23

g (mag)

17 18 19 20 21 22 23
Color-Magnitude Diagram: **Hydra I region**

DECam (180 s exposure)
SDSS
Results: **Chemo-Dynamic Properties**

Histogram of Hectochelle velocities

→ **Minimize thick disk contamination** by removing $g < 19$

→ **N = 187 stars in faint sample**

Velocity versus radius from Hydra I center

→ **Membership probabilities**

determined using EM algorithm
(Walker et al. 2009)
Results: **Chemo-Dynamic Properties**

Histogram of [Fe/H] values from SDSS/SEGUE spectra

→ $[\text{Fe/H}] = -0.93 \pm 0.03$
→ Four stars with $[\text{Fe/H}] < -1.5$ are likely contaminants
Results: Stellar Populations

- **DECam + Hectochelle Members**
 - 5.5 Gyr [Fe/H] = -0.9 [a/Fe] = 0.2
 - 80% Spectroscopic Members

- **SDSS + Hectochelle Members**
 - 5.5 Gyr [Fe/H] = -0.9 [a/Fe] = 0.2
 - 80% Spectroscopic Members
Results: **Chemo-Dynamic Properties**

Observed rotation in Hectochelle sample of stars with $P_m > 50\%$.

→ **Before** removing photometric contaminates: 8 ± 2 km/s

→ **After** removing photometric contaminates: 3 ± 2 km/s
Results: **Spatial Distribution of MSTO Stars**

Selection of MSTO stars with $g-r$ errors consistent with isochrone

Spatial position of MSTO stars (red) compared to spatial distribution of all point-sources
What is Hydra I?
Three Hypotheses...

Star Cluster
If a globular cluster, we expect:
- Old age (10–13 Gyr)
- $-2 < [\text{Fe/H}] < -0.5$
If an open cluster, we expect
- Young age ($< \sim 2$ Gyr)
- $-0.5 < [\text{Fe/H}] < 0.2$

Dwarf Galaxy
From mass-metallicity relation: progenitor would have been a Fornax-like dwarf
- Implies significant (>99.99%) mass loss

Substructure in the Monoceros Ring
EBS/Hydra could simply be part of the large Monoceros Ring complex

Age-[Fe/H] diagram for Milky Way globular (red, black) and open (green) clusters. Data from Dotter et al. 2011, Dias et al. 2014.
What is Hydra I?
Three Hypotheses...

Star Cluster
If a globular cluster, we expect:
- Old age (10–13 Gyr)
- $-2 < \text{[Fe/H]} < -0.5$

If an open cluster, we expect
- Young age (< ~2 Gyr)
- $-0.5 < \text{[Fe/H]} < 0.2$

Dwarf Galaxy
From mass-metallicity relation: progenitor would have been a Fornax-like dwarf
- Implies significant (>99.99%) mass loss

Substructure in the Monoceros Ring
EBS/Hydra could simply be part of the large Monoceros Ring complex

Stellar mass versus [Fe/H] for Local Group dwarf galaxies (Kirby et al. 2013)
What is Hydra I?
Three Hypotheses...

Star Cluster
If a globular cluster, we expect:
- Old age (10–13 Gyr)
- $-2 < [\text{Fe/H}] < -0.5$
If an open cluster, we expect
- Young age ($< ~2$ Gyr)
- $-0.5 < [\text{Fe/H}] < 0.2$

Dwarf Galaxy
From mass-metallicity relation:
progenitor would have been a Fornax-like dwarf
- Implies significant (>99.99%) mass loss

Substructure in the Monoceros Ring
EBS/Hydra could simply be part of the larger Monoceros Ring complex

Star count map of MSTO stars from Pan-STARRS1 (Slater et al. 2014). In the top panel, color indicates distance. The EBS stream is labeled as feature B in the bottom panel.
The Milky Way affords us the chance to study halo substructure in great detail. Much remains unknown about stream progenitors!

The properties of Hydra I:
- No rotation at the few km/s level
- Stellar pops as young as \(~6\) Gyr
- \([\text{Fe/H}] = -0.93 \pm 0.03\)

What To Take Away:

Future Work:
- Attempt CMD foreground subtraction to disentangle Hydra I from MRi region
- Artificial star test to improve star-galaxy separation; quantify completeness
- Detailed analysis of stream substructure using spatial maps
- Simulate observations of stream gaps/clumps to test for statistical significance