The Survey of the MAgellanic Stellar History – SMASH

Knut Olsen (NOAO)

DECam Community Science Workshop

March 12, 2015

The SMASH Team

- PI: David Nidever (UMich)
- Knut Olsen (NOAO)
- Eric Bell (UMich)
- Gurtina Besla (UAz)
- Robert Blum (NOAO)
- Thomas de Boer (Cambridge)
- You-Hua Chu (Illinois)
- Maria-Rosa Cioni (Hertfordshire)
- Blair Conn (Gemini)
- Carme Gallart (IAC)
- Robert Gruendl (Illinois)
- Shoko Jin (Groningen)
- Cliff Johnson (UW/UCSD)
- Catherine Kaleida (CTIO)
- Hwihyun Kim (ASU)
- Andrea Kunder (Potsdam)
- Steve Majewski (UVa)

- Nicolas Martin (Strasbourg)
- David Martinez-Delgado (IAC)
- Antonela Monachesi (UMich)
- Matteo Monelli (IAC)
- Ricardo Munoz (U.Chile)
- Noelia Noel (MPIA)
- Ed Olszewski (UAz)
- Abi Saha (NOAO)
- Guy Stringfellow (Colorado)
- Roeland van der Marel (STSci)
- Kathy Vivas (CTIO)
- Alistair Walker (CTIO)
- Dennis Zaritsky (UAz)

Background

Many reasons to love the Clouds!

- 16,000+ papers include "Magellanic Clouds" in abstract
- Surveyed from radio to x-ray wavelengths
- Magellanic Stream clear evidence of interaction
- 30 Doradus largest star forming region in Local Group
- Background source for microlensing
- Key rung in distance ladder
- Host of SN 1987A

Image credit: S. Janowiecki and the Galactic All Sky Survey (McClure-Griffiths et al. 2009)

- Geometry (e.g. van der Marel 2001)
- Magellanic Clouds on first infall or highly elliptical orbit (Kallivayalil et al. 2006, Besla et al. 2007)
- Magellanic Stream is 200+ degrees long (Nidever et al. 2010)
- Clouds extend a long way (Majewski et al. 2009, Saha et al. 2010)
- LMC and SMC may have collided directly
 ~200 Myr ago (Besla et al. 2012)
- LMC has stripped stars from the SMC (Olsen et al. 2011)
- Population gradients (Gallart et al. 2008, Meschin et al. 2014)
- Dwarf satellite population! (Koposov et al. 2015, Bechtol et al. 2015)

- Geometry (e.g. van der Marel 2001)
- Magellanic Clouds on first infall or highly elliptical orbit (Kallivayalil et al. 2006, Besla et al. 2007)
- Magellanic Stream is 200+ degrees long (Nidever et al. 2010)
- Clouds extend a long way (Majewski et al. 2009, Saha et al. 2010)
- LMC and SMC may have collided directly
 ~200 Myr ago (Besla et al. 2012)
- LMC has stripped stars from the SMC (Olsen et al. 2011)
- Population gradients (Gallart et al. 2008, Meschin et al. 2014)
- Dwarf satellite population! (Koposov et al. 2015, Bechtol et al. 2015)

- Geometry (e.g. van der Marel 2001)
- Magellanic Clouds on first infall or highly elliptical orbit (Kallivayalil et al. 2006, Besla et al. 2007)
- Magellanic Stream is 200+ degrees long (Nidever et al. 2010)
- Clouds extend a long way (Majewski et al. 2009, Saha et al. 2010)
- LMC and SMC may have collided directly ~200 Myr ago (Besla et al. 2012)
- LMC has stripped stars from the SMC (Olsen et al. 2011)
- Population gradients (Gallart et al. 2008, Meschin et al. 2014)
- Dwarf satellite population! (Koposov et al. 2015, Bechtol et al. 2015)

Besla et al. (2013)

- Geometry (e.g. van der Marel 2001)
- Magellanic Clouds on first infall or highly elliptical orbit (Kallivayalil et al. 2006, Besla et al. 2007)
- Magellanic Stream is 200+ degrees long (Nidever et al. 2010)
- Clouds extend a long way (Majewski et al. 2009, Saha et al. 2010)
- LMC and SMC may have collided directly ~200 Myr ago (Besla et al. 2012)
- LMC has stripped stars from the SMC (Olsen et al. 2011)
- Population gradients (Gallart et al. 2008, Meschin et al. 2014)
- Dwarf satellite population! (Koposov et al. 2015, Bechtol et al. 2015)

Olsen et al. (2011)

SMASH

V band mag/arcsec

Magellanic Stream Longitude

- PI: Nidever
- SMASH is probing for structure through a 480 square degree survey spread over an area of 2400 square degrees
- 178 fields, ugriz~24 (S/ N=10-20), 42 4-m nights, 28
 0.9-m nights (calibration)
- Expect catalog of ~250 million objects

Goals

Main goals:

- Search for the stellar component of the Magellanic Stream and Leading Arm
- 2. Detect and map extended stellar components of the Clouds including halos and tidal debris
- 3. Derive spatially resolved, precise star formation histories covering all ages of the MCs and to large radii

Additional goals:

- 1. Magellanic Cloud star cluster population
- 2. Galactic structure

Observing Strategy

- Most of our fields are nonoverlapping
- Observe complete fields in one shot to minimize overhead
- Reserve best seeing for overlapping main body fields
- Each field has three deep exposures per filter with small (5 arcsec) dithers
- Three shallow exposures per filter with half-chip dithers

Photometry

- Plan A was for team member Robert Gruendl to process data through DESDM pipeline
- DESDM performs well for most fields for single exposures
- Our observing strategy makes it painful to extract full depth photometry

Photometry

- DESDM in default configuration has problems in crowded fields
- Plan B to process data through alternate means

Photometry

Photometry test in Field 55 Process with:

- DESDM
- Nidever's PHOTRED (DAOPHOT-based) on CP products
- Saha's DoPHOT pipeline

Proceeding with PHOTRED approach

Pipeline for artificial star tests under separate consideration

Calibration

- On photometric 4-m nights, use Smith et al. and Stripe82/Stripe10 standards
- Nidever's STDRED pipeline to solve for transformation equations, including extinction, zero points, and color terms
- Expect to calibrate zero points of 40% of the fields with 0.9-m
- For 0.9-m photometry, fit for extinction, zero point, color term, and linearity
- Transforming to SDSS (will transform to DECam natural system at later date)

Medians all within 0.01 mag of 0.0 Standard deviations ~0.05 mag

- SMASH LMC densities:
 - R=14.5°, 32.0 mag/arcsec²
 - R=16.1°, 32.5 mag/arcsec²
 - R=19.4°, 33.30 mag/arcsec²
 - R=21.1°, 33.35 mag/arcsec²
- Very extended LMC
- McMonigal et al. (2014) also detected LMC stars in front of Carina

Plans for Population Analysis

Example goal: Outside-in quenching of the last star forming event related to ram pressure stripping or stellar gas consumption and/or feedback

Results: Modeling

Plans for Star Clusters

- Andromeda Project led by Ciff Johnson as part of PHAT survey of M31 (PI Dalcanton)
- Yielded uniform catalog of star clusters as well as completeness computed from simulated clusters
- Magellanic Clouds Project would be 5× Andromeda Project
- Provide basis for cluster formation efficiency

Conclusion

- Our understanding of the Magellanic Clouds as a system is rapidly changing
- Wide-ranging consequences, e.g. for:
 - Galaxy interactions
 - Star formation
 - Distance scale
 - Galactic halo
- Stay tuned for SMASH results!