

DECam Pipeline and Products

Robert Gruendl
(DESDM: Production Scientist)
NCSA/University of Illinois

and the DES/DESDM Team.

Outline

Current DESDM Processing Model

- Single Epoch Processing Pipeline
- Nightly Quality Assessment (by exposure)
 - · "is that really all the data"
- Coaddition
- Y2

SURVEY

Current Dataflow and Pipelines

Science Portal

March 12, 2015 $(\pi - 2)$

Year 1: Single-Epoch Pipeline Overview

DARK ENERGY SURVEY

FINALCUT (Y1A1):

- DECam_crosstalk: overscan, crosstalk, header-update
- Imcorrect: bias, linearity, flat, BPM, pupil, illumination, fringe
- Astrorefine: SExtractor + SCAMP
- Mkbleedmask: mask/interpolate bleed trails, bright stars, supersaturated crosstalk, edge-bleed)
- Maskcosmics:
- Streak-finder: Hough transform search for satellite trails
- create_catalog_modelfit: Sextractor w/ PSF model fitting
- Compress_files
- Photometric Standards Module
- QA assessment

DECam (raw from the telescope)

March 12, 2015 (π - 2)

DECam Community Workshop 2015

Overscan and Cross-talk correction

March 12, 2015 (π - 2)

DECam Community Workshop 2015

Detrend

March 12, 2015 $(\pi - 2)$

DECam Community Workshop 2015

Detrend

DARK ENERGY

Astrometric Solution (Sextractor + SCAMP + UCAC4)

DARK ENERGY SURVEY

Typically σ =200-250 mas (external)

March 12, 2015 $(\pi - 2)$

SURVEY

Bleed & Edge-Bleed Saturated Stars (Y1 included interpolation)

March 12, 2015 (π - 2)

DECam Community Workshop 2015

Edge-Bleed

Edge-Bleed

Edge-Bleed (Y1 included interpolation)

SURVEY

Bleed & Edge-Bleed Saturated Stars (Y1 included detailed mask)

Bleed & Edge-Bleed Saturated Stars (interpolation has its drawbacks)

DARK ENERGY SURVEY

March 12, 2015 (π - 2)

Bleed & Edge-Bleed Saturated Stars (Y2?)

CR and Streak Masking

March 12, 2015 (π - 2)

DECam Community Workshop 2015

SURVEY

CR-reject & streak finder

- Early CR-rejection was by neural net identification (only partially effective).
- SV: Single-Image CR-rejection was via gradient (better)
- Y1: Implemented LSST-stack CRrejection algorithm within DESDM pipelines.
- Streak finder deployed in Y1 uses identification via Hough transform

Streaks/Satellite Trails

- Occasionally (~6% of CCDs in single epoch exposures) have bright objects streaking across them (satellites, meteors, etc.)
- Streaks can impact photometry in both single epoch and co-added images.

Detection and Masking of Streaks

Performance:

March 12, 2015 (7-2) Ghz Contectif March 12, 2015 (7-2) Ghz Contectif March 12, 2015 (7-2)

Hough Transform

(Eli Rykoff's pyhough http://github.com/erykoff/pyhough)

SURVEY

- Iterate through each pixel of the thresholded image and count how many pixels lie at each possible angle
- Create a 2D histogram in "Houghspace" where lines accumulate as localized over-densities

Angle	Dist.
0	40
30	69.6
60	81.2
90	70
120	40.6
150	0.4

Angle	Dist.
0	74.6
30	89.6
60	80.6
90	50
120	6.0
150	-39.6

Single Epoch Cataloging

DARK ENERGY

- PSF modeling through AstrOmatic PSFex (has small issues with brighter-fatter effect in fully depleted CCDs
- Single Epoch model fitting using SExtractor provides single-epoch catalogs
- Currently, detailed analysis/monitoring of PSF (e.g. shape/whisker analysis) is not included
- After Global Calibration Module ~25 mmag rms

Exposure Based Assessment

DARK ENERGY SURVEY

Current assessment script evaluates each exposure based on single-epoch products. The goal is to determine whether each observations meets basic survey requirements.

Assessment is rendered based on calculation of the effective exposure time:

$$T_{\text{eff}} = (0.9 \text{ k / FWHM})^2 (Bkgd_{\text{dark}} / Bkgd) (10^{-2} \text{ cloud / 2.5})$$

$$= F_{\text{eff}} B_{\text{eff}} C_{\text{eff}}$$

Current cutoffs used are
$$T_{eff} > 0.2$$
 (gY-band)
 $T_{eff} > 0.3$ (riz-bands)

Cloud (C_{eff}) Determination

DARK ENERGY SURVEY

Cloud/extinction measurement is made by comparison of Single Epoch Catalog with respect to APASS (gr-bands) and NOMAD (grizY-bands).

Current comparison with NOMAD is crude (but probably sufficient).

Year 1 (vs. SVA1): Breakdown T_{eff}

DARK ENERGY SURVEY

March 12, 2015 (π - 2)

Year 1 (vs. SVA1): Breakdown

	SVA1		YEAR1	
Time period	11/01/12 - 02/15/13		08/31/13 - 02/15/14	
	# exposures	% accepted	# exposures	% accepted
All bands	10929*	60%	17605*	82%
g	1998	58%	4203	73%
r	2086	53%	2782	90%
i	2281	57%	2916	93%
z	2375	65%	2965	96%
Y	1608	88%	4738	70%

Y1 Observations Footprint

March 12, 2015 $(\pi - 2)$

Y1A1 Footprint(s)

Y1A1 footprint:

- STRIPE82, SPT
- SPT: Depth 2 (or greater):
 - ~3000 tiles
 - ~1500 sq degrees
- Depth 3 (or greater):
 - ~50% of area

COADD

DARK ENERGY SURVEY

COADDITION of single-epoch images requires a global calibration based on single epoch photometry (~25 mmag).

In Y1A1 an astrometric refinement step was added. Reduces the relative (i.e. internal) astrometric residuals:

- (internal) < 50 mas rms (all bands),
- (external) ~150-200 mas rms (2MASS)

Cataloging is based on a detection image (currently a linear combination of *r*, *i*, and *z*-bands).

COADD

DARK ENERGY

Y1 (and Y2) depth is nominally 4 exposures per survey pointing.

Due to variations in PSF there are known systematic problems with PSF magnitudes. MAG_AUTO and MAG_APER are likely better choices for science in the near-term.

Detailed QA of COADDs has been implement within the Brazil Portal (see talk by Luiz de Costa).

COADD merge

DARK ENERGY SURVEY

(F. Menantaeu)

March 12, 2015 (π - 2)

Y1(Y2?) COADD

DARK ENERGY SURVEY

Typical survey Field

SN Deep Field

riz-band

Y1(Y2?) COADD

DARK ENERGY SURVEY

Typical survey Field

SN Deep Field

Y1(Y2?) COADD

DARK ENERGY SURVEY

Typical survey Field

SN Deep Field

Current Y2 pipeline upgrades

- 1. Add Brighter/Fatter
- 2. Reorganize detrending to accommodate PCA template sky fitting.
 - Likely change from ADUs to electrons
- 3. Revamped handling of weights
 - carry ALL weights forward and adjust based on mask prior to steps that make measurements
- More detailed masks that reflect artifacts that may be tolerated for some measurements...
- Framework/orchestration enhancement to improve throughput on OSG type compute resources
- Detailed provenance tracking
- Direct incorporation of afterburner production (extinction, Mangle, etc...) into COADD pipelines.

Unspoken Thoughts