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THIS 1S YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSIERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START (OOKING RIGHT.




Why Deep Learning?
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Angular correlation function with systematics
Luminous Galaxies 0.4<z<0.7

Example that stellar density affects the clustering

signal at larger separation angles
© A.J.Rosset. al, 2011
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Treatment of Systematics

5. NOVEL TREATMENT OF SYSTEMATICS

: . how
should we handle the remaining systematics? Without
any evidence of possible non-linear effects of systematics
on the observed density fields, we adopt the simplest ap-
proach: linear relationship between the systematics and
the observed galaxy density fields.
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Ho et. al. 2012



eBOSS with DR5

Table 1. ¢eBOSS ELG Target Selection from Raichoor et al. (2017)

Criterion eBOSS ELG
[OI1] emitters 21.825 < g < 22.825

-0.068(r-z) + 0.457 < g-r < 0.112 (r-z) + 0.773
Redshift range (r-z) & (r-z)

0.218(g-r) + 0.571 < r-z < 0.555 (g-r) + 1.901

Our problem (Regression): model how the ELG
density depends on imaging systematics

0° +60°+120°180° -120°

+30°

Use HEALPIX to pixelize sky
With Nside = 256, we have around 120k healpix «
pixels

-30°

For each pixel, we have imaging systematics as

" n
Featu res 0 100 200 300 400 500 600 700 800
Density of eBOSS ELG DECaLS DRS5 [per deg?]

And number of Emission Line Galaxies ELGs as
“label”



Correlation Matrix of systematics and ngal
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Artificial Neuron

Inspired by Biological Neuron ) .
Biological Neuron

dendrites

The output is a non-linear
Function of the sum of the
inputs

To.R
B f2.
7 synapses
.

nucleus

Can be used for regression;
Estimating the relationships
between variables

McCulloch-Pitts Neuron Function, 1943
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Universal Approximators
see Hornik (1991), Cybenko (1989)




Feed Forward Neural Net :

11 Features, 2 h. layers, 10 neurons on each layer

Inputs:
EBV, seeing/depth/airmass in rgz,
Stellar density 17<r<20

Output:
Number of galaxies per pixel

ReLU activation function on hidden
layer neurons

Weights optimized with ADAM
algorithm by minimizing the mean
squared error

Num of parameters
(11+1)x10 + (10+1)x10 + 10+1

. ReLU

R(z) =max(0, z)
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https://arxiv.org/abs/1412.6980

4-Fold Validation

Overfitting?

Split data into k chunks

3 chunks for training and 1 chunk for testing
Shuffle the chunks

Repeat 4 times

RPun 1 RPun 2 Run3 Run ¢

A technique to have prediction
for the entire footprint

Training
Training Examples |:> Leamlng |:> Model A
(Xp ) Algorithm
Testing

' Generalization
Test Examples ::)
Model b |—= . 1) Performance




Average density in each bin of a particular
systematic
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Fluctuation in galaxy counts
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Clustering statistics
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Validation via mocks [1 realization so far]
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NEXT:

- Finish the 2x100 mock test

- Experiment with different healpix resolutions

- Feature importance with Layerwise Relevance Propagation
And or Ablation

. forward pass
input = output




An example of using DECam data to build a new method for

correcting systematic effects on target density and clustering
measurements

Beneficial to galaxy surveys eg. DESI, eBOSS

Thank You!



TECHNOLOGY

Using Al to Invent New
Medical Tests

by John J. Dillon and Paul A. Friedman

6, 18

SCiCllCC Home News Journals Topics Careers

Self-taught artificial intelligence beats doctors at
predicting heart attacks

Technology B|B|C

Google's 'superhuman' DeepMind Al
claims chess crown

® 6 December 2017 f W © [ <« Share
Google says its AlphaGo Zero artificial intelligence program has triumphed at

chess against world-leading specialist software within hours of teaching itself
the game from scratch.



Why does deep and cheap learning work so well?*

Henry W. Lin, Max Tegmark, and David Rolnick
Dept. of Physics, Harvard University, Cambridge, MA 02138
Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 and
Dept. of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

(Dated: July 21 2017)

When investigating the quality of a neural net, there are
several important factors to consider:

e Expressibility: What class of functions can the
neural network express?

e Efficiency: How many resources (neurons, param-
eters, etc.) does the neural network require to ap-
proximate a given function?

e Learnability: How rapidly can the neural network
learn good parameters for approximating a func-
tion?

This paper is focused on expressibility and efficiency,

How can neural networks approximate func-
tions well in practice, when the set of possible functions
is exponentially larger than the set of practically possible
networks? '
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Telescope Bands  Area Location

deg?
Blanco DECam grz 9%  NGC+SGC (Dec < +34 deg)
Bok 90Prime gr 5k NGC (Dec > +34 deg)
Mavall MOSAIC3  z 5k NGC (Dec > +34 deg)
WISE-W1 3.4 pm  all sky all-sky
WISE-W2 4.6 pm  all sky all-sky

. arXiv1611.00036




Plane waves from distant point source

Turbulent layer
in atmosphere

Perturbed
wavefronts




Deep Learning learns layers of features
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Number of Linear Regions of Shallow vs.
Deep NetWOI'kS [Montufar et a., NIPS 14]

Conjecture

A deep network has significantly greater representational
power than a shallow one.

Figure 1: Binary classification using a shallow model with 20 hidden units (solid line) and a deep model
with two layers of 10 units each (dashed line). The right panel shows a close-up of the left panel. Filled
markers indicate errors made by the shallow model.

Lecture 12




