DECam: An Asteroid Discovery Machine

Frank Valdes (NOAO)

The DECam Community
DECam explores the Solar system

DECam Asteroid Discovery Engine

Frank Valdes (NOAO)

- The DECam NEO Survey
- The DECam Archival TNO Survey
 - Planet 9
- The DECam Asteroid Database
The DECam NEO Survey

Trilling + 2017, AJ, 154, 170

L. Allen (NOAO), F. Valdes (NOAO), D. Trilling (NAU), D. Herrera, D. James, J. Rajagopal (NOAO), C. Fuentes (U. Chile), T. Axelrod (LSST), M. Brown (Caltech)
Exploding Death Rocks from Outer Space: Finding Near-Earth Objects before they find us!
Chelyabinsk (15 Feb 2013)

- Diameter ~20 m
- Exploded 25km up
- ~ 1500 injuries
- Pop. unknown
NEOs by Size, Brightness, Impact Energy

[A. Harris 2010]
NEO Survey Observations

- DECam Survey: 30 nights over 3 semesters
- Cover >340 sq. deg. in ~600 exposures per full night
- 40 sec. exposures in VR filter ($5\sigma = 23.5$ mag)
- 5 exposures per field with 5 minute cadence = 1 “quad”
- repeat fields on 2nd and 3rd (and 4th ...) night

Quad

Map grid

Detected moving objects
Data Handling

- 1.2 Gb/exposure, ~600 exp/night, ~0.72 Tb/night
- Transported to Tucson immediately
- Calibrated using NOAO Community Pipeline (CP)
 - “quad by quad” processing
- Tracklets found with the CP Moving Object Detection System
 - Valdes (2014)
- Results reviewed and reported to Minor Planet Center (MPC)
Moving Object Detections

- Median stack + difference images for each pointing
 - Catalog sources in difference images (exposure - median)
 - Pre-filter for common sources of contamination
 - Form pairs within the range of desired motions; require similarity (mag, shape, ...)
 - Extend motion calculated from pairs to position at a common epoch
 - Cluster positions to identify tracklet
 - Filter based on moving object signature to eliminate non-physical groupings
Identifying NEOs

• Create cutouts
• Use MPC digest2 program (>40%) → detections of interest (NEO's, Trojans, Centaurs and unusual motions)
• Visually review NEOs to eliminate remaining contamination
 – Virtually all 4 & 5 exposure detections are real
 – A small fraction (<10%) of 3-exposure detections are real (work continues to eliminate contamination automatically)
• Report to MPC
• MPC provides linkages and enables follow-up by community
Detection efficiency

- Add simulated asteroids to data (~70/exposure)
 - Use each exposure’s image quality
 - Distributions provide sampling at all magnitudes and NEO rates

Efficiency functions for all nights of 2014 April-May observing run, based on the injection and recovery of many thousands of synthetic objects.
Size distribution

H magnitude distribution of all detected NEOs. Top axis shows diameter (m), assuming albedo=0.2. Thin line = number of objects per (0.5mag) bin; thick line = cumulative number brighter than a given H.
Size distribution of NEOs

Rabinowitz et al. (2000)
Werner et al. (2002)
Mainzer et al. (2011)
Harris & D’Abramo (2015)
Trilling et al. (2017b)
Earth impactors from Boslough
Earth impactors from Boslough, rescaled
Tricarico (2017)
Schunova-Lilly et al. (2017)
Trilling et al. (2017a)
Summary

- $10^{6.6} \pm 10\%$ NEOs larger than 10 +/− 4 meters
- Implied impact risk for Chelyabinsk-sized object 10x less than previous estimates (e.g. Boslough et al. 2015)
- 20 more nights of data to be added
- More data mining to do (undesignated NEO, MBA, TNO, other transients)
DECam Archival TNO Survey

- The DECam NEO Survey
- The DECam Archival
TNOs from the NEO Survey

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of TNOs Submitted to MPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>6/49</td>
</tr>
<tr>
<td>2015</td>
<td>31/160</td>
</tr>
<tr>
<td>2016</td>
<td>9/57</td>
</tr>
</tbody>
</table>

- TNOs (known/discovered?) submitted to MPC
 - 2014: 6/49
 - 2015: 31/160
 - 2016: 9/57
TNOs from the DECam Archive

- Create a query to select datasets suitable for MODS over all the DECam exposures
 - several different experiments with different ways to select datasets
- Run through the CP with MODS turned on
 - several different experiments with different tuning
 - most recent with artificial sources added
- Detect TNOs and add to DAD
There are many caveats!

• Very inhomogeneous except for certain surveys and even then variable conditions strongly affect detection statistics.
• Detections come from a particular algorithm (MODS):
 – differences (exposure – median) with no PSF matching
 – limits on maximum position difference
 – detections are VERY dependent on conditions and variations between exposures
• There is no linkages of tracklets so, depending on the program, tracklets over-count asteroids
• The challenge for the SS is identifying suitable fields and groupings in an automatic way. There are many ways to segment the available archival data for MODS.
• DECam goes fainter than most dedicated programs (Pan-STARRS, Catalina) so follow up and orbit determination is hard; hence try and use large statistical numbers to make up for actual orbital parameters.
Distribution of apparent rates for slow moving tracklets. There is an assumption that a large majority are in the Kuiper Belt. There is an indication that the slowest and fastest objects have a spatial clustering along the ecliptic. The relative probability (%) is the likelihood of finding a tracklet in the rate bin per DECam exposure compared to other ecliptic areas in the same rate bin. Inserted synthetic sources are used as calibration for selection and detection effects. Error bars are root N.
Planet 9

The serendipitous search for a very distant Planet 9 looks for a very slow apparent rate. Synthetic sources are used to estimate the sensitivity of the algorithm and the data used. The figure shows the recovery probability of sources slower than 2”/hr.

Conclusion: It is possible to find very slow sources but nothing distant was found in ~ 700 pointings (with the hours to consecutive night cadences).

0.22 “/hr over 2 nights with 75 min between pairs.
This is relatively good conditions.
DECam Asteroid Database

and education

• Asteroid database for data publication and many potential uses
• Statistical studies
• Education
Statistics: Total Tracklets = 663957

<table>
<thead>
<tr>
<th>PI</th>
<th>Fields</th>
<th>Tracklets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen</td>
<td>3013</td>
<td>608829</td>
</tr>
<tr>
<td>Sheppard</td>
<td>611</td>
<td>48636</td>
</tr>
<tr>
<td>Forster</td>
<td>192</td>
<td>3353</td>
</tr>
<tr>
<td>Fuentes</td>
<td>191</td>
<td>1267</td>
</tr>
<tr>
<td>Dell’Antonio</td>
<td>19</td>
<td>433</td>
</tr>
<tr>
<td>Munoz</td>
<td>43</td>
<td>270</td>
</tr>
<tr>
<td>French</td>
<td>53</td>
<td>185</td>
</tr>
<tr>
<td>Carlin</td>
<td>16</td>
<td>140</td>
</tr>
<tr>
<td>Vivas</td>
<td>19</td>
<td>120</td>
</tr>
<tr>
<td>Rich</td>
<td>12</td>
<td>108</td>
</tr>
<tr>
<td>Sullivan</td>
<td>32</td>
<td>73</td>
</tr>
<tr>
<td>Saha</td>
<td>30</td>
<td>62</td>
</tr>
<tr>
<td>Trilling</td>
<td>22</td>
<td>59</td>
</tr>
<tr>
<td>Yip</td>
<td>12</td>
<td>46</td>
</tr>
<tr>
<td>Geha</td>
<td>8</td>
<td>39</td>
</tr>
<tr>
<td>Frieman</td>
<td>24</td>
<td>39</td>
</tr>
<tr>
<td>Dai</td>
<td>23</td>
<td>35</td>
</tr>
<tr>
<td>Rest</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>Bonaca</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>Mamajek</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>Heinze</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>Crnojevic</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>Konstantopoulos</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>Hargis</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>Mackey</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Taylor</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>McMonigal</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Calamida</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Walker</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Sheen</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Briceno</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Rusu</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>McCleary</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Penny</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Curtin</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>NOAO</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Schlegel</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Yan</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Geisler</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Filter</td>
<td>Tracklets</td>
<td></td>
</tr>
<tr>
<td>VR</td>
<td>636107</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>23708</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>3701</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>u</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

The Allen program is mostly main belt and NEOs with its short 40s x 5 min cadence. The Sheppard programs are TNO with long cadences.
Education

• High School Teen Astronomy Café
 – http://dec01.tuc.noao.edu/NHPPS_DATA/Allen/doc/TAC1802/Part1.html
 – http://dec01.tuc.noao.edu/NHPPS_DATA/Allen/doc/TAC1802/Part2.html

Example TOPCAT plot from DAD through the NOAO Data Lab.

Pseudo distance is a function of the inverse apparent rate for illustration (see the link to Part2 for details.)
Things to Do

• It is a challenge to connect this to the MPC database. I am looking forward to getting access to the version being developed at LPL.

• For the most recent (best) TNO pass through the archive a large number of artificial sources were embedded and detected. This dataset will be added to DAD soon has been added and used for statistical calibration. The NEO Survey has a synthetic source component that is not yet added.

• There are table fields that need to be populated (including entering datasets that produced no detections for statistical studies), a connection made to the cutouts through the Data Lab, many entries with main belt rates have not been visually checked so there is some level of false contamination.

• As always, documentation.