DECam photometry covering the entirity of the puzzling ω Cen globular cluster

Anmalisa Callanial STSCl-AURA
Govanni Stratmpelli, Armin Rest Giuseppe Bono, Tvan Temaro, Abi Saha, Giacinto lannicola, Dan Scolic DavidJames, Chris Smith, Alfredo Zeiteno

Why ω Cen?

- Most luminous and most massive galactic globular cluster
- Metallicity dispersion of more than 1 dex: -2.2 $<[\mathrm{Fe} / \mathrm{H}]<-\mathbf{0 . 5}$

Properties	GCs	$\boldsymbol{\omega}$ Cen	dSphs
Magnitude $\left(\mathrm{M}_{\mathrm{V}}\right)$	<-9	$\mathbf{- 1 0}$	$-8 /-13$
Mass $\left(\mathrm{M}_{\odot}\right)$	$\sim 10^{5}$	$\sim \mathbf{3 \cdot 1 0}$	$10^{6}-10^{8}$
Metallicity spread, $\Delta[\mathrm{Fe} / \mathrm{H}]($ dex $)$	<0.1	$\sim \mathbf{1}$	$0.2-1.4$

$>$ Relic of a dwarf galaxy accreted on the Milky Way

Many different RGBs:

- Metal-poor (main sub-pop)
- Metal-intermediate (different sub-pop)
- Metal-rich (RGB-a, $\omega 3$ branch)

U, V photometry from WFI@2-2m

The Blue $\mathcal{\&}$ the Red main-sequence
\checkmark Super-metal-poor sub-population ([Fe/H] <<-2.0) -> 30\% of ω Cen stars!!!
\checkmark Helium enhanced population ($\Delta \mathbf{Y} \sim \mathbf{0 . 1 5}$)
\checkmark Population of stars located behind ω Cen
(Bedin et al. 2004)

Helium enhancement?

From VLT's GIRAFFE spectra of 17 stars (Piotto et al. 2005):
Red main-sequence (rMS): $[\mathrm{M} / \mathrm{H}]=-1.57$, blue main-sequence (bMS): $[\mathrm{M} / \mathrm{H}]=-1.26$
bMS is 0.3 ± 0.2 dex more metal-rich than the rMS

CMD:

Isochrone best fit with
$[\mathrm{M} / \mathrm{H}]=-1.26, \mathrm{Y} \sim 0.35$

Spatial distribution of the bMS and the rMS

- Bellini et al. (2009) find a constant bMS to rMS ratio of ~ 0.4 from r ~ 10 to 20^{\prime}
- Sollima et al. (2007) finds a decreasing ratio and then a constant value of ~ 0.15 from $\mathrm{r} \sim 12$ to 25 ,
- No photometric study until know analyzed the bMS to rMS ratio for distances $\mathbf{r}>\mathbf{2 5}^{\prime}$-> Need field coverage and high photometric accuracy

DECam \& ACS photometric catalogs

- $171 \mathbf{u}, \mathbf{g}, \mathrm{r}, \mathrm{i}$ DECam@4m-Blanco images (3.5 nights, proposals 2014A-0327, 2015A-0151, 2016A-0189, 2017A0308, PIs: A. Calamida, A. Rest) covering a FoV of $6.5^{\circ} \mathbf{x} 4.0^{\circ}$
- 36 ACS@HST images in F475W, F625W, F658N for 9 fields and a total FoV of 9'x 9’
- Photometric calibration with standards of Stripe82 transformed to DECam natural system
- Total combined ACS-DECam photometric catalog of ~ 3 million of stars (~ 1.8 million cluster members)

DECam color-magnitude diagrams

$\mathbf{S} / \mathbf{N}>=\mathbf{2 0}$ down to $\mathrm{u} \sim 23$, $\mathrm{g} \sim 23, \mathrm{r} \sim 23, \mathrm{i} \sim 22.5 \mathrm{mag}$

CMD is contaminated by field stars!!

We have no accurate proper motions for all the stars in the FoV, in particular below the mainsequence Turn-Off
-> GAIA DR2: not useful below the MS Turn-Off!!

FoV: ~ $6.5^{\circ} \times 4.0^{\circ}$

DECam and GAIA DR2

Fig. A.6. Two examples of astrometric data coverage with five-parameter solutions. On the left, ω Cen, the worst case, on the right NGC 5272, a more average example of coverage The gaps in the coverage for ω Cen are the result of the filters that have been applied to the astrometric data. The cyan circles are at intervals of 35 pc in ω Cen and 10 pc in NGC 5272.

GAIA collaboration Helmi al. 2018, arXiv180409381G

DECam and GAIA DR2

Reddening correction

- Differential reddening is present around ω Cen
- We use the reddening map of Schlafly \& Finkbeiner 2011 (ApJ 737, 103) to correct DECam photometric catalog

$$
\begin{aligned}
& \text { Mean } \mathrm{E}(\mathrm{~B}-\mathrm{V})=0.11 \\
& \sigma_{\mathrm{E}(\mathrm{~B}-\mathrm{V})}=0.02 \mathrm{mag}
\end{aligned}
$$

Cluster and field star separation

Color (g-i) - Color (u-r) - Magnitude (r) diagrams

Stars with a measurement in all 4 filters, ugri. Thanks to the u filter we have an increased sensitivity to temperature and metallicity that allows us to better separate cluster and field stars

DECam CMDs for cluster members

Color-magnitude surface

Interactive figure OAR

$\Delta=\Delta(\mathrm{g}-\mathrm{i})$: size of the $(\mathrm{g}-\mathrm{i})$ color bin from the bMS or rMS ridge lines to select bMS and rMS stars

We used 28 color bins from $\boldsymbol{\Delta}=\mathbf{0 . 0 2} \mathbf{~ m a g}$ (min avg. photometric error) to $\boldsymbol{\Delta}=\mathbf{0 . 3 0} \mathbf{~ m a g}$ for the selection

$\mathbf{N}(\mathrm{bMS}) / \mathbf{N}(\mathrm{rMS})$ for different ($\mathrm{g}-\mathrm{i}$) color bins, $\boldsymbol{\Delta}$, and for all the observed stars (a), ω Cen members (b), field stars (c) as a function of distance from the cluster center, \mathbf{r}

For ω Cen: $\mathbf{N}(\mathrm{bMS}) / \mathbf{N}(\mathrm{rMS})$ is decreasing from $\sim \mathbf{0 . 3 - 0 . 4}$ at $\mathrm{r} \sim 5^{\prime}$ (half-mass radius) to $\sim \mathbf{0 . 2}$ at $\mathrm{r} \sim 20^{\prime}$ $\mathrm{N}(\mathrm{bMS}) / \mathrm{N}(\mathrm{rMS})$ then steadily increases until ~ 0.8 at $\mathrm{r} \sim 60^{\prime}$. The ratio keeps increasing beyond the tidal radius until $\sim \mathbf{1 . 4}$

Density map of $\mathrm{N}(\mathrm{bMS}) / \mathrm{N}(\mathrm{rMS})$ as a function of position

$\mathbf{N}(\mathbf{b M S}) / \mathbf{N}(\mathrm{rMS})$ has a clumpy distribution, with a well-defined North/South asymmetry in the outermost regions.
bMS stars are significantly more abundant in the Northern quadrants.

Spatial distribution of red-giant branch stars

Halo and/or extra-tidal stars?

Preliminary results:

the nominal tidal radius for ω Cen (~ 1 degree) might be underestimated, or presence of an halo/extra-tidal stars

Similar results were found by Marconi et al. (2014, MNRAS, 444,3809) based on VST photometry for $6^{\circ} \times 6^{\circ}$ across ω Cen

Work in progress...

Summary and conclusions

- ω Cen hosts a MR sub-population ($\omega 3$ branch) that shows a more extended spatial distribution compared to more metal-poor stars for distances $\mathbf{r}>15$;
- ω Cen bMS stars show a more extended spatial distribution compared to rMS stars. The frequency of bMS stars, supposedly more metal-rich than the rMS stars according to spectroscopy, steadily increases for $\mathbf{r} \boldsymbol{>} \mathbf{2 5}$, outnumbering the rMS stars at and beyond the tidal radius. Their spatial distribution is clumpy, with an excess of bMS stars in the direction of the Galactic center
- These results, if confirmed, would make ω Cen the only stellar system currently known in the Universe to have more metal rich stars with a more extended spatial distribution compared to more metal-poor stars -> For more info see Calamida et al. 2017, AJ, 153, 175

