DECam photometry covering the entirity of the puzzling ω Cen globular cluster

Annalisa Calamida, STScI - AURA Giovanni Strampelli, Armin Rest, Giuseppe Bono, Ivan Ferraro, Abi Saha, Giacinto Iannicola, Dan Scolnic, David James, Chris Smith, Alfredo Zenteno

DECam workshop, NOAO, Tucson, May 21, 2018

Why ω Cen?

- Most luminous and most massive galactic globular cluster
- Metallicity dispersion of more than 1 dex: -2.2 < [Fe/H] < -0.5

Properties	GCs	ω Cen	dSphs
Magnitude (M _V)	< -9	-10	-8/-13
Mass (M_{\odot})	$\sim 10^5$	~ 3·10 ⁶	106-108
Metallicity spread, Δ [Fe/H] (dex)	< 0.1	~ 1	0.2-1.4

Relic of a dwarf galaxy accreted on the Milky Way

> "Merging" of two different stellar systems

The **Blue** & the **Red** main-sequence

Super-metal-poor sub-population ([Fe/H] <<-2.0) -> 30% of ω Cen stars!!!
 Helium enhanced population (ΔY ~ 0.15)

✓ Population of stars located behind ω Cen

Helium enhancement?

From VLT's GIRAFFE spectra of 17 stars (Piotto et al. 2005):

Red main-sequence (rMS): [M/H] = -1.57, **blue main-sequence (bMS):** [M/H] = -1.26

bMS is 0.3 ± 0.2 dex more metal-rich than the **rMS**

CMD:

Isochrone best fit with [M/H] = -1.26, Y~ 0.35

Spatial distribution of the bMS and the rMS

0.35

0.3

snu 0.25 0.25 FORS1@VLT

- Bellini et al. (2009) find a constant bMS to rMS ratio of ~ 0.4 from r ~ 10 to 20'
- Sollima et al. (2007) finds a decreasing ratio and then a constant value of ~ 0.15 from r ~ 12 to 25'
- No photometric study until know analyzed the bMS to rMS ratio for distances r > 25' -> Need field coverage and high photometric accuracy

DECam & ACS photometric catalogs

- 171 u,g,r,i DECam@4m-Blanco images (3.5 nights, proposals 2014A-0327, 2015A-0151, 2016A-0189, 2017A-0308, PIs: A. Calamida, A. Rest) covering a FoV of 6.5 °x 4.0°
- 36 ACS@HST images in F475W, F625W, F658N for 9 fields
 and a total FoV of 9'x 9'
- Photometric calibration with **standards of Stripe82** transformed to DECam natural system
- Total combined ACS-DECam photometric catalog of ~ 3 million of stars (~1.8 million cluster members)

DECam FoV: ~ 6.5° x 4.0°

DECam color-magnitude diagrams

FoV: ~ 6.5° x 4.0°

g ~ 23, r ~ 23, i ~ 22.5 mag CMD is contaminated by field stars!! We have no accurate

 $S/N \ge 20$ down to $u \sim 23$,

proper motions for all the stars in the FoV, in particular below the mainsequence Turn-Off

-> **GAIA DR2**: not useful below the MS Turn-Off!!

DECam and GAIA DR2

Fig. A.6. Two examples of astrometric data coverage with five-parameter solutions. On the left, ω Cen, the worst case, on the right NGC 5272, a more average example of coverage The gaps in the coverage for ω Cen are the result of the filters that have been applied to the astrometric data. The cyan circles are at intervals of 35 pc in ω Cen and 10 pc in NGC 5272.

GAIA collaboration Helmi al. 2018, <u>arXiv180409381G</u>

DECam and GAIA DR2

Reddening correction

- Differential reddening is present around ω Cen
- We use the reddening map of Schlafly
 & Finkbeiner 2011 (ApJ 737, 103) to
 correct DECam photometric catalog

Mean E(B-V) = 0.11 $\sigma_{E(B-V)} = 0.02$ mag

Cluster and field star separation

Color (g-i) – Color (u - r) – Magnitude (r) diagrams

Stars with a measurement in all 4 filters, *ugri*. Thanks to the **u** filter we have an increased sensitivity to temperature and metallicity that allows us to better separate cluster and field stars

Interactive figure IOP

Interactive figure OAR

DECam CMDs for cluster members

The main-sequence split: star selection

N(bMS)/N(rMS) for different (g-i) color bins, Δ , and for all the observed stars (a), ω Cen members (b), field stars (c) as a function of distance from the cluster center, r

For ω Cen: N(bMS)/N(rMS) is decreasing from ~ 0.3-0.4 at r ~ 5' (half-mass radius) to ~ 0.2 at r ~ 20'
N(bMS)/N(rMS) then steadily increases until ~ 0.8 at r ~ 60'. The ratio keeps increasing beyond the tidal radius until ~ 1.4

Density map of N(bMS)/N(rMS) as a function of position

N(bMS)/N(rMS) has a clumpy distribution, with a well-defined North/South asymmetry in the outermost regions. bMS stars are significantly more abundant in the Northern quadrants.

Spatial distribution of red-giant branch stars

Spectroscopy for internal regions of ω Cen says: Main cluster metal-poor population: blue and brightest RGB Metal-intermediate stars: one intermediate RGB Most metal-rich stars: faintest and reddest RGB, ω3

The ω3 branch (MR) has a more extended spatial distribution starting from r ~ 15' from the cluster center

MI RGB stars are more concentrated compared to MP and MR RGB stars, but have a more extended distribution beyond the nominal tidal radius

Halo and/or extra-tidal stars?

Preliminary results:

the nominal tidal radius for ω Cen (~1 degree) might be underestimated, or presence of an halo/extra-tidal stars

Similar results were found by Marconi et al. (2014, MNRAS, 444, 3809) based on VST photometry for 6°x 6° across ω Cen

Work in progress...

Summary and conclusions

• ω Cen hosts a MR sub-population (ω 3 branch) that shows a more extended spatial distribution compared to more metal-poor stars for distances r > 15';

• ω Cen bMS stars show a more extended spatial distribution compared to rMS stars. The frequency of bMS stars, supposedly more metal-rich than the rMS stars according to spectroscopy, steadily increases for r > 25', outnumbering the rMS stars at and beyond the tidal radius. Their spatial distribution is clumpy, with an excess of bMS stars in the direction of the Galactic center

• These results, if confirmed, would make ω Cen the only stellar system currently known in the Universe to have more metal rich stars with a more extended spatial distribution compared to more metal-poor stars -> For more info see Calamida et al. 2017, AJ, 153, 175