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area 
(deg2)

visits 
(per filter) filters exposure time in sec 

(per visit) Depth

SN shallow 22 125 griz 175/150/200/400 23.5

SN deep 5 125 griz 600/1200/1800/3630 24.5



+ Realtime difference imaging (a few hours)

Goldstein et al. (2015)

1. INTRODUCTION

To identify scientifically valuable transients or moving
objects on the sky, imaging surveys have historically adopted a
manual approach, employing humans to visually inspect
images for signatures of the events (e.g., Zwicky 1964; Hamuy
et al. 1993; Perlmutter et al. 1997; Schmidt et al. 1998;
Filippenko et al. 2001; Strolger et al. 2004; Blanc et al. 2004;
Astier et al. 2006; Sako et al. 2008; Mainzer et al. 2011;
Waszczak et al. 2013; Rest et al. 2014). But recent advances in
the capabilities of telescopes, detectors, and supercomputers
have fueled a dramatic rise in the data production rates of such
surveys, straining the ability of their teams to quickly and
comprehensively look at images to perform discovery.

For surveys that search for objects on difference images—
CCD images that reveal changes in the appearance of a region
of the sky between two points in time—this problem of data
volume is compounded by the problem of data purity.
Difference images are produced by subtracting reference
images from single-epoch images in a process that involves
point-spread function (PSF) matching and image distortion
(see, e.g., Alard & Lupton 1998). In addition to legitimate
detections of astrophysical variability, they can contain artifacts
of the differencing process, such as poorly subtracted galaxies,
and artifacts of the single-epoch images, such as cosmic rays,
optical ghosts, star halos, defective pixels, near-field objects,
and CCD edge effects. Some examples are presented in
Figure 1. These artifacts can vastly outnumber the signatures of
scientifically valuable sources on the images, forcing object
detection thresholds to be considerably higher than what is to
be expected from Gaussian fluctuations.

For time-domain imaging surveys with a spectroscopic
follow-up program, these issues of data volume and purity are
compounded by time-pressure to produce lists of the most

promising targets for follow-up observations before they
become too faint to observe or fall outside a window of
scientific utility. Ongoing searches for Type Ia supernovae
(SNe Ia) out to z 1~ , e.g., those of the Panoramic Survey
Telescope and Rapid Response System Medium Deep Survey
(Rest et al. 2014) and the Dark Energy Survey (DES;
Flaugher 2005), face all three of these challenges. The DES
supernova program (DES-SN; Bernstein et al. 2012), for
example, produces up to 170 gigabytes of raw imaging data on
a nightly basis. Visual examination of sources extracted from
the resulting difference images using SExtractor (Bertin &
Arnouts 1996) revealed that 93%~ are artifacts, even after
selection cuts (Kessler et al. 2015). Additionally, the survey has
a science-critical spectroscopic follow-up program for which it
must routinely select the 10~ most promising transient
candidates from hundreds of possibilities, most of which are
artifacts. This program is crucial to survey science as it allows
DES to confirm transient candidates as SNe, train and optimize
its photometric SN typing algorithms (e.g., PSNID; Sako
et al. 2011, NNN; Karpenka et al. 2013), and investigate
interesting non-SN transients. To prepare a list of objects
eligible for consideration for spectroscopic follow-up observa-
tions, members of DES-SN scanned nearly 1 million objects
extracted from difference images during the survey’s first
observing season, the numerical equivalent of nearly a week of
uninterrupted scanning time, assuming scanning one object
takes half a second.
For DES to meet its discovery goals, more efficient

techniques for artifact rejection on difference images are
needed. Efforts to “crowd-source” similar large-scale classifi-
cation problems have been successful at scaling with growing
data rates; websites such as Zooniverse.org have accumulated
over one million users to tackle a variety of astrophysical
classification problems, including the classification of transient

Figure 1. Cutouts of DES difference images, roughly 14 arcsec on a side, centered on legitimate (green boxes; left four columns of figure) and spurious (red boxes;
right four columns of figure) objects, at a variety of signal-to-noise ratios: (a) S N 10- , (b) 10 S N 30-< , (c) 30 S N 100-< . The cutouts are subclassed to
illustrate both the visual diversity of spurious objects and the homogeneity of authentic ones. Objects in the “Transient” columns are real astrophysical transients that
subtracted cleanly. Objects in the “Fake SN” columns are fake SNe Ia injected into transient search images to monitor survey efficiency. The column labeled “CR/Bad
Column” shows detections of cosmic rays (rows b and c) and a bad column on the CCD detector (row a). The columns labeled “Bad Sub” show non-varying
astrophysical sources that did not subtract cleanly; this can result from poor astrometric solutions, shallow templates, or bad observing conditions. The numbers at the
bottom of each cutout indicate the score that each detection received from the machine learning algorithm introduced in Section 3; a score of 1.0 indicates the
algorithm is perfectly confident that the detection is not an artifact, while a score of 0.0 indicates the opposite.
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The Astronomical Journal, 150:82 (15pp), 2015 September Goldstein et al.

Kessler et al. (2015)

Automated Supernova Survey Monitoring
Realtime monitoring 
system with fake SN

Machine learning to filter junk detections.
~200-500 detections per visit; only ~4% artifacts!



The DES-SN Survey

Cadence Monitor

mean cadence of ~7 days

DES-SN “discovered” ~15,000 Likely Supernovae

~2000 High quality photometrically classified 
Type Ia SNe from 0.1 < z < 1.2  over all 5 years 
(all with host spectroscopy)

~500 Spectroscopically confirmed Type Ia 
Supernovae over all 5 years. (251 in first 3 years)



Riess et al. 1998
Perlmutter et al. 1999

The Landscape of Spec Supernova Surveys



Scolnic et al. 2018

Pantheon Analysis

Riess et al. 1998
Perlmutter et al. 1999

The Landscape of Spec Supernova Surveys



The DES 3YR Spec Ia Dataset
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DESSN 
(3yr Spec)

0.02 < z < 0.85 206 SNe 
after cuts

External 
LOWz 

(CFA,CSP)
z < 0.10 128 SNe 

after cuts

The DESSN 3Yr Spec Ia Dataset

Source Spec. Redshifts #Spec Ia 

Redshift



Difference Imaging

→ SNe Candidates

Spectra               → Type & redshift

Photometry      → “Standardizable Candles” 

Calibration         → Rel. Dist. btwn. All SNe 

Simulations        → Distance Bias Corrections 

Systematics     → Covariance Matrix 

CosmoMC          → wCDM fit with SNeIa + Planck 2015 14

The Ingredients for Supernova Cosmology
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Blinded
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σw (stat+sys) #SNe Analysis

0.054 740 JLA Spec (2014)

0.063 453 PS1+Lowz Spec (2018)

0.058 ~1000 PS1+Lowz Phot (2017)

? 334     DES3YR+Lowz Spec (2018)

How Does DESSN Stack Up?                  
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How Does DES Stack Up?
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How Does DESSN Stack Up?                  
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σw (stat+sys) #SNe Analysis

0.054 740 JLA Spec (2014)

0.063 453 PS1+Lowz Spec (2018)

0.058 ~1000 PS1+Lowz Phot (2017)

0.057 334     DES3YR+Lowz Spec (2018)

How Does DES Stack Up?
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How Does DESSN Stack Up?                  
How Does DES Stack Up?



Precision Flux Measurements For Precision Distances

We forward model THE 
SCENE:

Environment 

Supernova 

Telescope + Atmosphere
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Our Photometry is accurate and unbiased

FAKE SN on Images

9

*This is a 3mmag 
systematic per band

True Magnitude

DATA MODEL

Our photometry is accurate and unbiased



Calibration is our largest systematic uncertainty

PS1

DES

Primary Standard Stars (C26202)

Tertiary Standard Stars



Calibration is our largest systematic uncertainty

24

PS1

DES

Differential Flux Ratio

σ = 0.6%

Primary Standard Stars (C26202)

Tertiary Standard Stars
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Photometric Calibration is trusted to 6mmag

10

         = .006

+Cross calibration with 
PS1 

Repeated Measurements of Thousands 
of HST Tertiary Standard Stars

-- Gaussian

(Burke et al. 2017)

0.6%

Calibration Consistency Check



Overview of Cosmology Fitting

We use the BBC method to produce a bias-corrected Hubble diagram in log spaced z-bins
along with nuisance parameters.

For each of 60 source of systematic uncertainty we re-derive a binned Hubble diagram.

Using all systematics we compute a binned covariance matrix.

—> CosmoMC cosmology fit



To predict biases, we need accurate simulations

!26

Cadence

PSF

 Sky Noise

Atmospheric Transmission

Peculiar Velocities

Lensing of Galaxies

and more…



Compute Distance Bias Corrections
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The SNANA simulations match the data

11

*Redshift

*MAX S/N *subset of many criteria used to determine goodness of simulations

using BBC method (Kessler et al. 2017)



1. Calibration (20 low-z bands + 4 DES bands) 

2.  SNeIa Lightcurve Model 

3.  Distance Bias Corrections

4.  Milky Way Extinction 

Our systematics fall in the following categories

→ Total 60 Sources of Systematic Uncertainty
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To assess the impact of each systematic uncertainty, we 
rederive distances after varying each systematic.

REDSHIFT

Δd
is

ta
n

ce
(r

el
at

iv
e 

to
 s

ta
t-

o
n

ly
)

Zeropoints Lightcurve Model

subset of all 58 systematics

DES g band

Redshift

.05 w

.05 w

To assess the impact of each systematic uncertainty, we re-
derive distances after varying each systematic



Subset of all 60 sources  
of systematic uncertainty
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To assess the impact of each systematic uncertainty, we 
rederive distances after varying each systematic.
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Zeropoints Lightcurve Model

subset of all 58 systematics

DES g band DES r band

DES z bandDES i band

Milky Way Extinction

Peculiar Velocity Correction

Redshift Redshift

RedshiftLight Curve Fitter CalibrationHST Calibration

.05 w

.05 w

.05 w

.05 w

.05 w

.05 w

.05 w

.05 w
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.05 w

.05 w

.05 w

.05 w

.05 w

.05 w

.05 w

To assess the impact of each systematic uncertainty, we re-
derive distances after varying each systematic
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Constraining Cosmology in the Era of Large SN 
datasets

Constraining Cosmology in the 
Era of Large Datasets
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Fake Mus
Fake Mus Cosmology Analysis using 

10,000 Fake SNe Processed 
With DIFFIMG and SMP

~6000 SNe pass quality cuts
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Generate 200 Simulated Samples with systematics 
input and check w bias and uncertainty.

Generate 200 Simulated Samples with input 
systematics and check w bias and uncertainty
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Generate 200 Simulated SAmples with systematics 
input and check w bias and uncertainty.

Generate 200 Simulated Samples with input 
systematics and check w bias and uncertainty



Preliminary Results!
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Fitted Hubble 
residual step   

Preliminary RESULTS!                               

across
Intrinsic Scatter   vs.
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Preliminary Results!
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17

Fitted Hubble 
residual step   

Preliminary RESULTS!                               

DES has lowest intrinsic scatter and doesn’t see HR effect. Not understood, but interesting clue...

across



Preliminary DES Results!
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Preliminary RESULTS!             (flat wCDM)                   
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Flat wCDM
Preliminary DES Results!
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Preliminary RESULTS!             (flat wCDM)                   
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Flat wCDM
Preliminary DES Results!
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Preliminary RESULTS!             (flat wCDM)                   

18

Flat wCDM
Preliminary DES Results!

The beginning of an era dominated  
by systematic uncertainties



DECam Filter Curves

Photometric Light Curves

Host Galaxy Properties (SB, Mass, etc…)

Redshifts

Light Curve Fit Parameters

Bias corrections

Binned z Covariance matrix

Hubble Diagram (each event & binned)

CosmoMC Chains

Code Releases

(not confirmed)

Survey Cosmology

Proposed Data Products
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Thank You

20


