


Time Domain Astronomy _

Many exciting astronomy discoveries currently happening in the time domain:
Supernovae

Gamma-ray Bursts

Extrasolar Planets

Tidal Disruption Flares

Cataclysmic Variables

AGN

Microlensing, etc.
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Need availability of Target of Opportunity observations (ToO), with clear
quidelines and procedures

Need repeated observations of fields on various timescale (minutes, hours, days,
weeks, etc.)

Need for data access/management including
1. Real-time (or at least relatively fast) analysis
2. Fast/easy access to pre-event image archives (online sky atlases, etc.)
3. Management of large datasets
4. Quick image differencing / relative photometry




Outline

1t Gamma-ray burst (GRB) central engines &
progenitors

1t GRB afterglows
1t GRB-related supernovae
1t GRB host galaxies

3¢t Tidal disruption flares




GRB Central Engines:

v Produces ~10°? ergs of
power in only seconds

v High temporal variability
= small size

e

Magnetic ~ K Accretion disk
field lines \ /

v Rare (~1 per galaxy every
106 years)

=» Accreting Black Hole




GRB Photon Production: _
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HYPERNOVA SCENARIO Scientific American, December 2002




Current Status of GRB Research

Open Questions: P
« Short-duration GRB progenitors? T T T T T
« Long-duration GRBs all from core collapse? 20 | |
« GRB circumstellar environments/dust? : Ml + %
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» Shock details?

» Metallicty?

» Trace obscured star formation?

 Clues to reionization history of the universe?
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Understand GRBs as individual events =
Use as cosmological probes... ? T

Observed wavelength (um)

(Tanvir et al. 2009)
GRB 090423 @ z = 8.2




GRB Satellites:
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(Credit: General Dynamics C4 Systems)

» > 500 GRBs detected since 2004 » Launched in June 2008

» Rapid GRB localization via » High energy sensitivity for improved
onboard X-ray and UV/Optical gamma-ray spectral coverage
telescopes » Generally poor localization (~0.1- 1

degree radius)




Wide-field Capabilities

Swift won’t last forever (sob!)

Large area instrumentation
required to cover Fermi GRB
localizations!




GRB Afterglows
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GRB AG Example: Jet Opening Angles

» Blastwave (6; >>1/T) to blob (6; < 1/T’)

» Time of break determines 6;
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Serendipitous Observations
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« Orphan afterglow?
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> Low probability, but high !
Interest/reward! 28|
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GRB 980425
SN 1998bw
(z=0.0085)

GRB-Related SNe;
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GRB 060218
SN 2006lw
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(z=0.033)

Days after GRB

(Cobb et al. 2006)




L
o GRB 091127/SN 2009nz
z=0.49

Gemini-South Observations
(Cobb et al. 2010)




_ GRB 091127/SN 2009nz _
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GRB Host Galaxies _

Keck observations of “dark bursts”

hosts
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arrow (\,)
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Few dark bursts are at high
@ redshift!
>

o ot < 7% of Swift burstsareatz > 7

(90% confidence)
@ - Instead, dark bursts are due to
dust.

- BUT... hosts generally do not
™ appear highly extincted!
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Where is the dust?
Local to the GRB progenitor?

Circles indicate Unevenly distributed in host?
b X-ray,
optical, or
position

(Perley et al. 2009)



Tidal Disruption Flares

New class of high energy transients in need of optical follow-up!

GRB 110328A / Swift J164449.3+573451 (@ z= 0.3534)
(Levan et al. 2011; Burrows et al. 2011; Zauderer et al. 2011, Bloom et al. 2011, etc.)

Triggered Swift like a classic long-GRB...
Then X-rays kept going and going and going...
Coincident with the nucleus of a non-active galaxy...
Conclusion: tidal disruption of a star passing too close to the central black hole!

Other examples?
Swift J2058.4+0516 (@ z=1.1853), etc...
(Cenko et al. 2011)

Tidal Disruption Flare Characteristics:

- Months-long super-Eddington X-ray
outbursts

—> Luminous radio counterparts, indicating the
presence of relativistic ejecta

- Relatively faint optical emission




Summary

3t Many open questions about GRB progenitors,
environments and host galaxies!

1t As a sensitive, wide-field imager on a 4-meter class
telescope, DECam provides a new instrument capable
of significant contributions to our understanding of
GRBs, particularly if ToO observations are available
and survey data Is eventually quickly and easily
accessible




