Image: A. Mellinger

1

Searching for the Universe's Faintest Galaxies… *in our Galactic Neighborhood*

> William Cerny (Yale) Rare Gems in Big Data @ Tucson 05/22/24

Galaxies like the Milky Way – and their host dark matter halos – assemble through the hierarchical merging and accretion of smaller galaxies/(sub)halos.

 $Cat-18$

 $Cat-17$

 $Cat-16$

High-resolution, dark-matter-only simulations of MW mass hosts from the Caterpillar suite (Griffen+ 2016)

As a result of this assembly process, the Milky Way is expected to be surrounded by an entourage of *faint dwarf galaxy satellites spanning a large range in mass*

Images adapted from Griffen+ (2016), Bullock and Boylan-Kolchin (2017); Sloan Digital Sky Survey 3

At the low mass extreme are the "ultra-faint dwarfs" (UFDs)

usually defined by $M_V > 7.7$; $M_* < 10^5$ M_\odot (Simon 2019)

The UFDs are the...

- Least Luminous and Least Massive
- Oldest and Least Chemically Enriched Most Dark-Matter-Dominated

galaxies in the universe!

Their faint and diffuse nature make them elusive "rare gems" --> even though they're likely the most common class of galaxy in the universe!

4

At the low mass extreme are the "ultra-faint dwarfs" (UFDs)

(usually defined by $M_V > 7.7$; $M_* < 10^5$ M_\odot (Simon 2019)

Background: SDSS image of the UFD "Segue I"!

Exactly how many of these ultra-faint galaxies there are around the MW depends on the nature of dark matter

Cold Dark Matter simulation Warm Dark Matter simulation

e.g., "warmer" DM particles suppress small scale structure → expect fewer faint dwarf galaxies around the Milky Way!

In addition, the number of dwarfs at the low-mass end is strongly sensitive to baryonic processes regulating galaxy formation \rightarrow highly uncertain in many cases!

7

7

Cartoon inspired by Munshi+2019, Nadler+2019, Manwadkar & Kravtsov+2021, Weerasooriya+2022, Ahvazi+2023, etc.

Takeaway:

A complete, well-characterized census of Milky Way satellite galaxies *extending down to the faintest dwarfs* can provide strong constraints on the nature of dark matter and the processes governing galaxy formation in low-mass halos

Takeaway:

A complete, well-characterized census of Milky Way satellite galaxies *extending down to the faintest dwarfs* can provide strong constraints on the nature of dark matter and the processes governing galaxy formation in low-mass halos

…. so how can we find these very-low-mass, ultra-faint dwarf galaxy satellites?

Milky Way ~ $O(100 * 10^9 \text{ stars})$ Full Sky: ~41,000 deg²

Milky Way \sim $O(100 * 10^9$ stars)

Full Sky: $~1,000$ deg²

Factor of ~10- 8

UFDs \sim **O**(10² detectable stars)

Factor of ~10-9

UFDs: \leq few arcmin²

Milky Way \sim $O(100 * 10^9$ stars)

Factor of ~10- 8

UFDs \sim $O(10^2 \text{ detectable stars})$

Full Sky: $~1,000$ deg²

Factor of ~10-9

UFDs: \leq few arcmin²

And this is ignoring the orders-of-magnitude more serious contamination from background galaxies! 13

Image: A. Mellinger

Seven decades of progress in one animation

Based on literature data compiled by Andrew Pace 14

Discovery of the Sculptor dSph by Shapley (1938) 15

The "classical dwarfs" $(M_{*} > 10^{5} M_{\odot})$ around the MW were primarily discovered through a combination of photographic plate surveys, visual inspection, and luck

March 1, 1938

A Stellar System of a New Type. - A large rich cluster with remarkable characteristics appears on photographs received from the Boyden Station. Since nothing quite like it is now known, a detailed though preliminary description is given in the following pages. First noted on a long-exposure Bruce plate, the assembly of hazy images near the plate limit was thought to be an extended cluster of galaxies, such as the well-known system in Coma. Subsequent photographs made with the southern 60-inch reflector show, however, that the individual members are stars rather than spheroidal galaxies.

The advent of sensitive wide-field imagers and digital sky surveys catalyzed the ultra-faint dwarf galaxy revolution

Images from SDSS, DES, and HSC Collaborations

Modern scheme: Milky Way satellite galaxy candidates are detected as spatially-localized "overdensities" of resolved, old, metal-poor halo stars

Many variations on this theme: see, e.g. Willman+2005, Koposov+2008, 2015, Walsh+2009, Bechtol+2015, Drlica-Wagner+2020 17

Modern scheme: Milky Way satellite galaxy candidates are detected as spatially-localized "overdensities" of resolved, old, metal-poor halo stars

Many variations on this theme: see, e.g. Willman+2005, Koposov+2008, 2015, Walsh+2009, Bechtol+2015, Drlica-Wagner+2020 18

UFDs are ancient, metal-poor stellar populations, and we can exploit these properties to find them

Stellar Color

19 NASA/ESA, Anderson and van der Marel (STSci); adapted by Alex Drlica-Wagner

Key Technique: Isochrone Matched-Filtering

Discovery of Eridanus IV with DECam (Cerny+DELVE Collaboration 2021)

(not shown here: a few tricks to weight filtered stars)

Brightness

Color Smoothed, isochrone-filtered stellar density map

→ scan isochrone at a range of distances and select for detection of maximum signal

20 20

We parallelize by splitting the sky into $~2$ deg² HEALPix pixels and running the matchedfiltering over each pixel independently

→ later concatenate into a single detection catalog

Most recent tranche of new MW satellites with DECam (Cerny+DELVE Collab. 2023b)... can look pretty marginal even here!

False Positives (can) pose a significant challenge

All exceed a nominal ~5σ Poisson significance threshold but are false positives.. not necessarily trivial to reject these cases!

Deeper follow-up imaging on ~8m telescopes is critical for robustly confirming new discoveries (1/2)

Deeper follow-up imaging on ~8m telescopes is critical for robustly confirming new discoveries (2/2)

Deeper data resolves the old Main-Sequence Turn Off (oMSTO) feature - very useful for isochrone fitting

Large sample of low-mass stars improves constraints on the system's morphology (size, ellipticity, etc.)

The Current Frontiers in the Luminosity-Size Plane

Apparent cutoff in surface brightness: real, or a detection limit?

Are systems this faint common? (record as of 2024: M_V = +2.2!)

25

The Vera C. Rubin Observatory will catalyze a new wave of discovery

Image: Rubin Observatory

Forecasts based on semi-analytical modelling; from Manwadkar and Kravtsov (2022) (= same as the earlier animation)

 10^3

 10^{2}

10

 $10⁰$

25.0

 $d_{\rm{helio}} < 300~\rm{kpc}$

Observed Satellites

30.0

 μ _V (mag arcsec⁻²)

32.5

27.5

 $M_V < 0$

35.0

… so long as we can tackle the issue of star/galaxy separation!

At the faint limiting magnitudes probed by Rubin/LSST, compact blue galaxies outnumber blue stars >>10:1

Adapted from Fadely, Hogg, and Willman (2012) 27

… so long as we can tackle the issue of star/galaxy separation!

At the faint limiting magnitudes probed by Rubin/LSST, compact blue galaxies outnumber blue stars >>10:1

This is *already* the main limiting factor for current surveys/dwarf searches.. and even was an issue for Shapley in 1938!

in the following pages. First noted on a long-exposure Bruce plate, the assembly of hazy images near the plate limit was thought to be an extended cluster of galaxies,

Adapted from Fadely, Hogg, and Willman (2012)

Closing thoughts about where ML may play a role (and has already)

1. Star/Galaxy separation, of course!

- a. Given a set of morphological parameters, we already often estimate p(star) vs. p(galaxy) → how can we use this *probabilistically* and avoid hard cuts?
- 1. Candidate Triaging: how do we go from $O(10000?)$ detections $\sim O(\sim 100)$ likely candidates, at 100% completeness, without requiring human visual inspection?
	- b. Can we use the image plane + CNNs to hone candidate pools? (e.g. Jones+23)
	- c. What "metadata" should we collect with each detection that might help a ML model be able to sort true detections from false positives?
- 1. Quantifying and Interpreting Sensitivity / Completeness:
	- b. Example: Dark Energy Survey used simulated dwarf injection to understand sensitivity, then trained a RF classifier over those results to predict satellite detection probability as a function of distance, size, absolute magnitude, etc. (Drlica-Wagner+ 2020)

Summary

1. The number / luminosity function of ultra-faint dwarf galaxies around the MW is a strong probe of dark matter and galaxy formation physics

- 1. Deep, wide-field imagers have unveiled ~50 ultra-faint MW satellites to date, primarily using non-ML-based isochrone matched filter searches
- 1. There are scores to hundreds of ultra-faint galaxies within reach of the upcoming Vera C. Rubin Observatory / LSST
- 1. Maximizing the UFD/satellite yield from Rubin will require tackling the challenges of star/galaxy separation and false positives - role of ML?

Bonus Slides

Satellite Discoveries (as of 2020)

THE ASTROPHYSICAL JOURNAL, 893:47 (25pp), 2020 April 10

The Role of Multi-Object Spectroscopy

Star Clusters or Dwarf Galaxies?

For our purposes: **Dwarf galaxies have dark matter**, while star clusters do not

Two Main Observational Diagnostics:

σ

Assume dynamical equilibrium —> large enclosed mass → DM

Are the faintest MW satellites dwarfs or star clusters?

