

Looking for anomalous variability: wandering unsupervised

Alex Razim, Ruder Bošković Institut, Zagreb, Croatia NOIRLab Rare Gems conference, Tucson, USA, 22.05.2024

Intro slides that got chopped and recycled

2000: ROTSE, ASAS	2025: ZTF, LSST
~10 ³ - 10 ⁸ of LCs	~10 ¹⁰ of LCs
100-500 obs' per object	up to 1000 obs' per object
single-bands, m _v ≤ 15	(u)griz(y) bands, m _r ≲ 24

Supervised vs. Unsupervised vs. Semi-supervised ML

- supervised: train the algorithm to map observed features to pre-determined labels
- unsupervised: determine internal topology of the dataset in a feature space, no labels used
- semi-supervised: use partially labelled dataset to study the topology of the dataset better

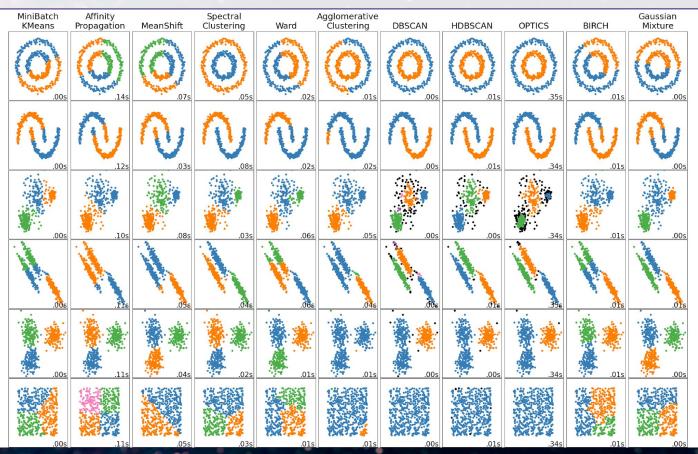
Common applications for ML in astronomy

- star-galaxy classification
 (Odewahn et al. 1992, Bertin & Arnouts 1996)
- morphological galaxy classification (Storrie-Lombardi et al. 1992, Dieleman et al. 2015)
- photo-z
 (Firth et al. 2003)
- spectra classification (von Hippel et al. 1994, Folkes et al. 1996)
- solar activity prediction (Lundstedt & Wintoft 1994)

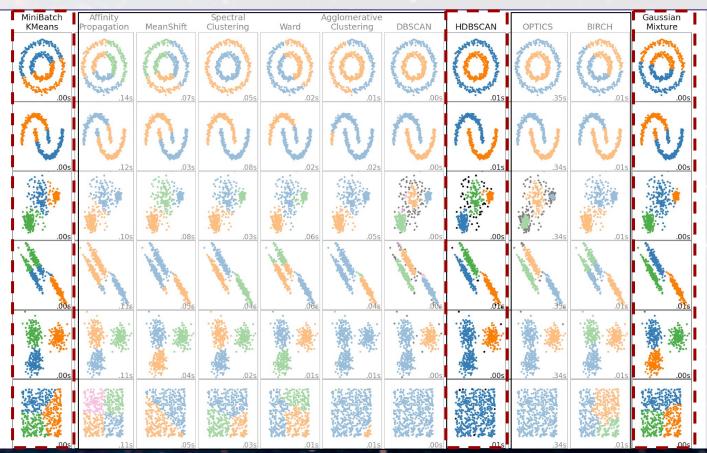
Intro slides that got chopped and recycled

2000: ROTSE, ASAS	2025: ZTF, LSST
~10 ³ - 10 ⁸ of LCs	~10 ¹⁰ of LCs
100-500 obs' per object	up to 1000 obs' per object
single-bands, m _v ≲ 15	(u)griz(y) bands, m _r ≲ 24

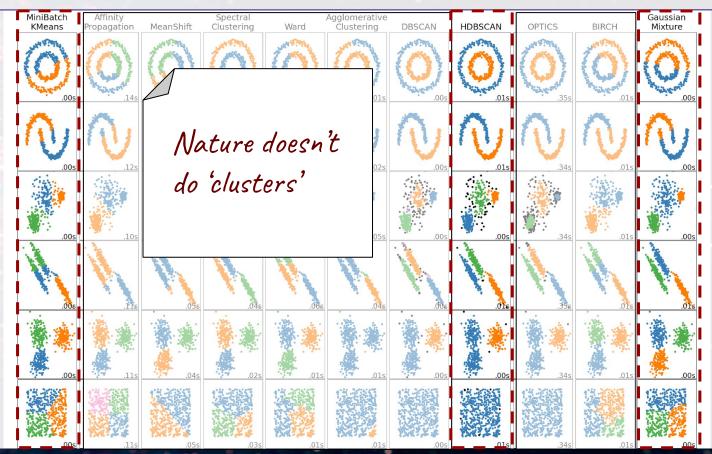
Supervised vs. Unsupervised vs. Semi-supervised ML


- supervised: train the algorithm to map observed features to pre-determined labels
- unsupervised: determine internal topology of the dataset in a feature space, no labels used
- semi-supervised: use partially labelled dataset to study the topology of the dataset better

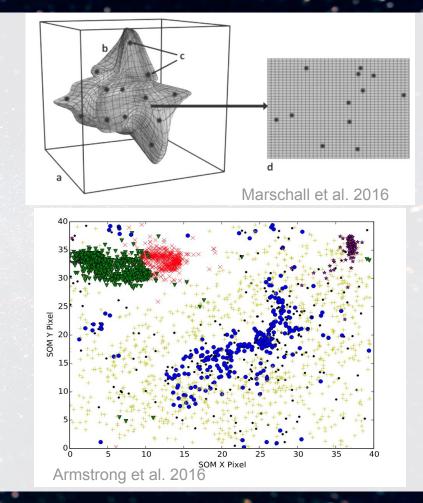
Common applications for ML in astronomy

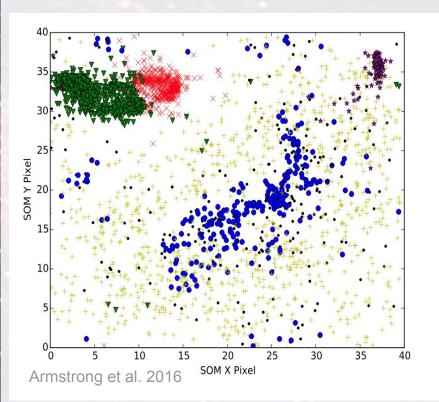

- star-galaxy classification (Odewahn et al. 1992, Bertin & Arnouts 1996)
- morphological galaxy classification (Storrie-Lombardi et al. 1992, Dieleman et al. 2015)
- photo-z
 (Firth et al. 2003)
- spectra classification (von Hippel et al. 1994, Folkes et al. 1996)
- solar activity prediction (Lundstedt & Wintoft 1994)

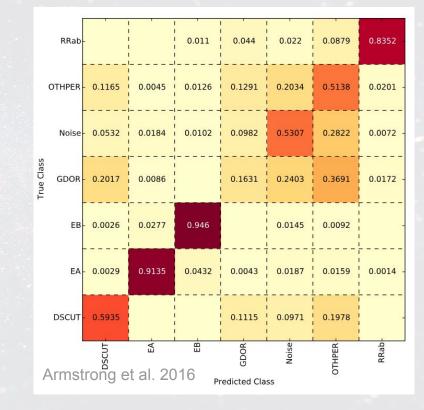
Mostly supervised


UML algorithms: clustering

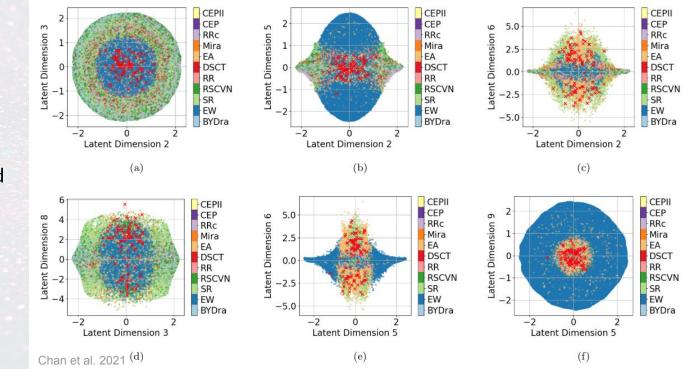
UML algorithms: clustering


UML algorithms: clustering

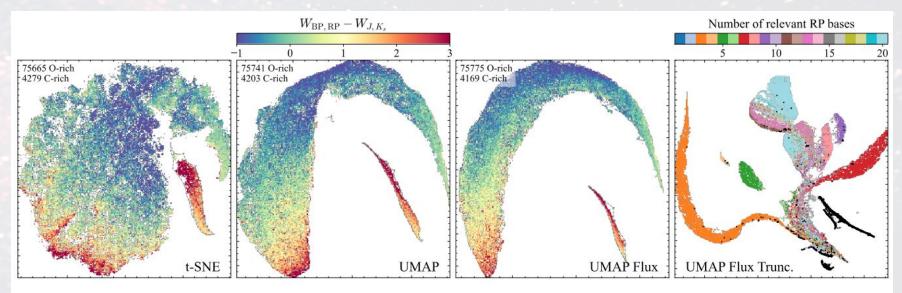

UML algorithms: dimensionality reduction


- PCA (+non-linear);
- Self-Organizing Maps (SOM);
- Uniform manifold approximation and projection (UMAP);
- t-distributed stochastic neighbor embedding (tSNE);
- Neural gas;
- Autoencoders;

Two guiding principles: proximity (not always Euclidian!) and continuity

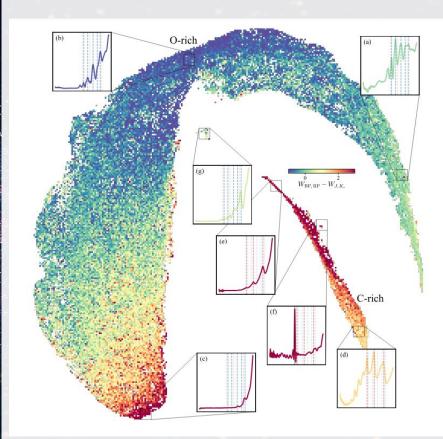


Dimensionality reduction: N-D -> 1D



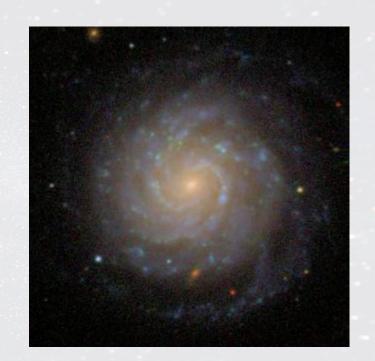
UML algorithms: anomaly detection

All of the above + modified supervised algorithms


UML algorithms as a form of dark magic

Sanders & Matsunaga, 2023

UML algorithms as a form of dark magic

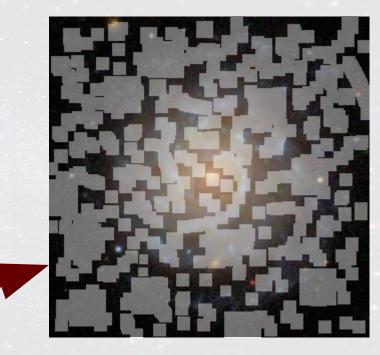

- not as popular as supervised (and self-supervised in case of LLM) in industry → not so many well-developed tools
- interpretability is worse than for supervised ML (read: horrible)
- not many tools are adapted for data with uncertainties

Sanders & Matsunaga, 2023

Astronomical LCs as a source of unyielding pain

- Variable sizes of data vectors
- Uneven sampling
- Phase gaps
- No universal period finding algorithm (+aliasing)
- We need to take into account uncertainties
- Outliers can ruin period finding (and, consequently, everything)
- Good interpolations are computationally expensive (Gaussian Processes!)

Astronomical LCs as a source of unyielding pain


- Variable sizes of data vectors
- Uneven sampling
- Phase gaps
- No universal period finding algorithm (+aliasing)
- We need to take into account uncertainties
- Outliers can ruin period finding (and, consequently, everything)
- Good interpolations are computationally expensive (Gaussian Processes!) If galaxy images If galaxy images

Astronomical LCs as a source of unyielding pain

- Variable sizes of data vectors
- Uneven sampling
- Phase gaps
- No universal period finding algorithm (+aliasing)
- We need to take into account uncertainties
- Outliers can ruin period finding (and, consequently, everything)
- Good interpolations are computationally expensive (Gaussian Processes!)

We need simulations and interpolations

What are the 'rare gems' for the variable sources?

Unknown unknowns

- Boyajian star & Co (Boyajian et al. 2016);
- Blue large-amplitude pulsators (BLAPs, Pietrukowicz et al. 2017)
- Known unknowns (intermediate types, rapidly passing evolutionary stages)
 - Fast Yellow Pulsating Supergiants (FYPS, Dorn-Wallenstein et al. 2020)
 - changing-state AGNs (Sanchez-Saez et al. 2021)

- Anomalous objects of common categories
 - Multi-mode anomalous Cepheid (Soszynski et al. 2020)
 - Beat type II Cepheid (Smolec et al. 2018)
 - Magnetic chemically peculiar stars (Bernhard et al. 2021)
- Rare, but already known subtypes
 - High-Amplitude Delta Scuti (Lee et al. 2008)
 - Anomalous Cepheids (Soszynski et al. 2015, 2017)
- 'Ordinary' objects in non-ordinary environments
- 'Ordinary' objects with high value for the 'hot topics'

Astronomers who can do ML

Astronomers who can do follow-up observations

8.6

NOIRLab Rare Gems conference. ML for anomalous variability search. Alex Razim

) %

Astronomers who can do

ML

Astronomers who can do follow-up observations

 \mathcal{U}

Don't look for new algorithms
 → Don't look for fancy features
 Look for the right co-authors

MapLC project (SMASH, Slovenia, starting Feb 2025)

Objectives:

- Develop a UML-based software package for astronomical variability data analysis;
- Develop a tool for managing feature sets, coming from different sources;
- Compare different algorithm/feature set combination for several science cases.

Deliverables:

- Work datasets with several feature sets;
- UML-visualization and interpretation Python package;
- An comparison of algorithm/feature set performance for the test science cases;
- Detection/classification catalogues for test science cases

Feature sets:

- pre-developed by the LSST TVS SC community;
- pre-developed by the alert brokers;
- home-brewed ML-based

UML algrorithms:

- Self-Oranising Maps;
- UMAP;
- HDBSCAN

Test science cases:

- Blue Large-Amplitude Pulsators (BLAPs);
- Yellow Pulsating Supergiants (YPSs);
- Tidal Disruption events (TDEs);
- Supernovae (SNe);
- Young Stellar Objects (YSOs)

Challenges, infrastructural requirements and solutions

Challenges	Solutions
 Improve datasets 'discoverability' Improve UML interpretability Deal with uneven sampling and phase gaps Adapt UML algorithms to data with uncertainties Look for laws and relations in higher dimensionalities Adopt 'anomaly-oriented' mindset 	 Data archives APIs; Schema browsers; tutorials for crossmatching/forced photometry, tutorials for quality cuts. (Software development trainings - invest in making code reusable!) performance comparison papers for feature sets and period finding algorithms fast LC simulations and interpolation algorithms computer scientists' help needed for improving interpretability better visualization data imputation (including UML), semi-supervised ML 'anomalies-oriented' follow-up calls, papers? (proactive approach) 'anomaly-oriented' projects. Not 'we can reproduce the already existing classification', but 'let's take the objects from the 'Other' category and figure out what they are'.