

Agenda

	Time		Section	Presenter
1	9:00AM	30 min	Intro	Mark
2	9:30AM	60 min	PSM/LCB/MEZ	Peter
	10:30AM	30min	Break N/Lunch South	All
3	11:00AM	30 min	AFE/Flex/Connectors	Mark
4	11:30AM	30 min	TSM	Mark
	12:00PM	30 min	Lunch North/Break S	All
5	12:30PM	45 min	Mechanical	Joe
6	1:15PM	45 min	Software	Nick
7	2:00PM	30 min	Mfg & Test	Ron
	2:30PM	30 min	Overall Q & A	All
	3:00PM	60 min	Panel Session	Panel
	4:00PM	15 min	Panel report	Torrent team & Panel

Section 3

- AFE
- Flex cables
- Connectors

CCD AFE

CCD AFE Details

- 4 channels of DC restored, dual slope Correlated Double Sampling (CDS) Video
- 8 channels of Low Voltage Biases: ±17V
- 8 channels of High Voltage Biases:
 0 to 28V or -28V to 0
- 16 channels of clocks: ±17V
- On board regulators and references
 - Provides stability over temperature and supply fluctuation

August 20, 2010

CCD AFE Details

- Optimized for 100 kpix/sec 350 kpix/sec
 Maximum design is 500 kpix/sec
- Programmable test points for system debug
 - Allows viewing of clocks and biases on board edge connectors during code development
- EEPROM to hold calibration data
- Temperature sensors at two locations
- Two boards fit in one chassis for the total channel count

Block Diagram of AFE

- Shows the sections of the AFE, showing the relative location of sections also
- Important for noise control
 - Clocks as far away from Video as possible
- Allows ground current control
- Lower chance for ground loops with single board for all connections to CCD

CCD AFE Design

- Designs for Torrent very similar to Orange
 Clocks, Video processing & Biases identical
- Changes:
 - Higher density/Finer resolution DACS
 - 12 bit vs. 8 bit
 - 16 DACs in a single package for higher density
 - All DAC channels are buffered on chip
 - Different switches for clocks and video
 - Clock switches are smaller and lower R_{on}
 - Video switch no longer needs logic supply
 - First video amplifier placed closer to dewar connectors in TSM
 - Gain and rolloff in this stage
 - Allows interchangeability of controllers

CCD AFE Testing

- ✓ All clocks tested over full range and loads
 - Unloaded rise time of <150 ns
- ✓ All LV Biases tested for drive, range and noise
- All HV Biases tested for drive, range, noise for both polarities
- Video channels have several tests for noise to check each section
- Programmable test points for system debug
 - Allows viewing of clocks or biases on board edge connectors

AFE Video performance

- Shorted input test of 4 channels on one AFE
- Shows 2 3 ADU of noise on 18 bits
 - Equal to 4µV
 - Dwell time of 1µs

CCD AFE misc

- CCD type done first as opposed to IR
 More requirements for CCD vs. IR
- We have a reference design for the IR version with 16 channels for each board for a 32 input IR Torrent
- We also have an oversampler design for extremely low noise (<1e⁻) using statistical oversampling
 - Developed through the Clinic Program with Harvey Mudd Engineering students (<u>www.hmc.edu</u>)

Flex circuits

- We are using flex cables to connect the AFE sections to the TSM
 - One cable carries the Clocks and Biases
 - One cable carries the video inputs
 - Each cable supports two AFE cards
- Selected to help control crosstalk and impedance
 - Controlled by layout of flex cable

Flex cables installed

Shows the Clocks & Biases flex and Video flex

August 20, 2010

Connecting Controller to TSM

- Selected D series connectors from Positronics
 - Two High density connectors for AFE signals
 - Standard D25 for Utility Board
 - Connectors have guide pins for alignment
 - One side floats
 - Other side is fixed
- TSM Present switch in controller to detect:
 - If there is a TSM
 - Removal of controller with power on
- Shorting switch in TSM to short Preamp AGND to shield when controller removed
 - Time between removal of controller & insertion of shorting plug

August 20, 2010

TSM and Controller Connectors

Video – Top **Clock & Bias - Bottom Utility Connector** 14 August 20, 2010 **Torrent Readiness Review**

Section 4

- TSM
 - Preamp, Clock and Bias interface
 - Utility

Dewar Connectors for NOAO North Dewars

Transition Module

- Customizable part of Torrent
- Resides on the Dewar
- Interface to the Dewar
- Preamp with gain and filtering to buffer the CCD
 - Allows controller to be independent of CCD/Dewar
- Shutter output
- Dewar CCD temperature control
- EEPROM to hold system configuration
- Two Internal Temperature sensors, as usual

Interlocks

- The Torrent design has two hardware interlocks between the controller and the Transition Module
 - TSM Present switch on the LCB
 - Senses the presence of the TSM before turning on the outputs
 - Disables the outputs in case of accidental removal with power applied
 - The TSM Grounding switch on the Preamp
 - shorts the AGND to shield when the controller is removed, to protect the CCD

TSM Preamp

- Same as first stage of Orange design
 - Load resistor for CCD
 - Capacitor for DC removal
 - Initial filtering of CCD signal using low pass in feedback of opamp
- Set the initial gain here for varying CCD sensitivity
 - Makes controller independent of TSM
- Is the connection area for the Video, Biases and Clocks to dewar interface
- Allows filtering for Clocks and Biases
 - Simple RC network for customization
- The TSM is the only customizable part of Torrent!
 - This version will be versatile enough for most applications

TSM U TILITY

- Added to handle functions missing on Orange as well as new functions
- EEPROM and two Temperature sensors
 - EEPROM holds configuration data for system
 - standard on all Torrent boards
- Opto Isolated Shutter and Preflash outputs
- Two Opto Isolated status inputs
- CCD Thermal control
 - Calibrate for Diode or RTD sensors
 - Heater output up to 8W, jumper selectable
- Connectors for (NOAO-N) standard monitoring TCs
- Again Remember that this is customized for the project

TSM Utility Board

 Shows the Utility 2 Shutter out board Input and Aux out 2 **Outputs** Shutter open 2 Does not show Shutter closed 2 calibration pots for RTD & Diode **To/From PSM** 2 Heater out calibration Diode1 or 2 Jumper for heater RTD1 in Temp1 Diode 2 or power setting 2 RTD2 in Temp2 **EEPROM**

Connector I/O on the TSM

External:

- Shutter out*
- Aux out (preflash)*
- Status 1 in (shutter open)*
- Status 2 in (shutter closed)*
 - All on a bulkhead mount Lemo 8 pin circular connector
- TC1 (monitor on CCD) and TC2 (monitor on tank)
 - Bulkhead TC Connectors

*Note: These are optically isolated:

- Resistor to power & common needed for OC output
- Series resistor & common to drive the LED for input

August 20, 2010

Internal:

- Heater out**
- Temp 1 in
- Temp 2 in
- **Power level programmed by the heater power selection jumper on Utility board
- Connected back to the LCB through PSM
 - EEPROM
 - Temp1
 - Temp2

End of Section 4

Next is:30 minLunch North/Break S45 minMechanicalJoe