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Why Spectroscopy?

*Composition/abundances

*Velocity (radial, dispersion, rotation curves)
*Temperature

*Excitation mechanisms

*Density/pressure

°Intervening matter
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Outline

* Brief overview of the obstacles between a raw
frame and the final product

* Choosing the right grating in the right
spectrograph on the right telescope

* The kinds of calibrations you need and how to
apply them
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Things | Won’t Cover
(but are still important)

* Multi-object (see the GMOS presentations)

* Nod & Shuffle (see the GMOS presentations)
* Extended objects

* High-resolution

* Infra-red (See NIRI/NIFS presentations)

» Software/IRAF parameters (See A User’s Guide to
Reducing Slit spectra with IRAF, Massey, Valdes, & Barnes,
1992, available on the NOAO web site)

NOAO Gemini Data Reduction Workshop
July 19, 2010




L —emccnceeckhccccccccca e
1
1
'
1
'

S/N:

The CCD

T B L L T T T S

[ )
[
CCD486

5/10/2005
Wavelength (nm)

July 19, 2010

ciency of the Detector

NOAO Gemini Data Reduction Workshop

T B e T

SPECTRAL QUANTUM EFFICIENCY

- e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

g g gy g g S S g g g g Y N

1
&
L
@
O
el
al

S |

Quantum E




Problem #1: The CCD
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Problem #2: The Sk
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Other Potential Problems

* Finding the right grating for your project

* Biases, darks, overscan (CCD/electronics effects)
e Second-order light

 Parallactic angle

e Observing standard stars (flux and other)

* Getting good wavelength calibration lamps
e Extraction of the 1-D spectrum

* Wavelength calibration

* Flux calibration

e Telluric correction
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Three Things to Take Away
from this Presentation

1. Do no harm

Don’t compromise the data
Do the minimum necessary for removal of
instrumental effects and calibration
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Three Things to Take Away
from this Presentation

2. Look at the data

Don’t expect everything to work

A misplaced bias frame or saturated
flat field can lead to problems that
are difficult to diagnose
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Three Things to Take Away
from this Presentation

3. Take all the calibration frames
vou need and then take all the

calibration frames you don’t think
you need




Planning the Observation: Gratings

There are two basic quantities to consider:

A
1: Resolving Power =R = AA S Nm

Resolution a function of dispersion, detector
pixel scale, slit width, and (possibly) seeing
Essentially the ability to distinguish nearby features

2: Wavelength Coverage

Limited mainly by size of detector as well as optics,
telescope throughput, and detector response
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Planning the Observation: Gratings

In practical terms, gratings are described with a few numbers:

1. The number of lines per mm (e.g., R400, B1200)
Higher numbers mean better resolution

2. The blaze wavelength, essentially the wavelength
with the highest efficiency, but other effects can

change this, so you should seek out the efficiency
curve

3. Dispersion in A/pixel
4. Resolution, measured with some slit width
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Grating Efficiency Curve
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Planning the Observation: Gratings
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Second-order Light
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Blue light in second order overlaps red light in first order
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Second-order Light

ool Gemini GG 455 Filter

=
o)
'
e
»©
72
ot
-
=
=
7
=
=
:J
P
_—

0.4

02k

OO Al Lssssssans Lessonsnay | lsssssnnss | P 1

4000 5000 6000 7000 8000 9000 10000
Wavelength (A)

Use an order-sorting filter (generally identified with the
half-throughput wavelength)
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Testing the CCD: Biases

Use biases and flats to determine gain and read noise (for this
and a lot more detail about CCDs, see Steve Howell’s talk, or
his book, Handbook of CCD Astronomy)

The /N is your friend. Do enough biases to get above the
read noise

For most modern detectors, there isn’t much need to subtract
a bias for spectroscopic frames. As long as there isn’t a
pattern, any residual pedestal in the bias will be removed by
sky subtraction

The real value is as a test of instrument health.
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Testing the CCD: Darks

As with biases, dark current in modern optical detectors isn’t
usually a serious problem.

It can take a lot of time to get enough darks to be well above
the read noise.

Check with the instrument scientist to see if dark current is a
concern.
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Testing the CCD: Trim & Overscan

Examine the CCD, find out about saturation and non-linearity

Determine the useful region of the CCD . If parts of the CCD
don’t have counts (or have too many), then that will play
havoc with statistics used to scale other calibrations, so make

sure you have a well-defined region of the CCD to use.

Look at the overscan in some of your biases and flats. The
region defined in the headers often includes portions that
aren’t good. Choose a subset of the overscan that gives you
an unbiased look
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Cross cut of flat
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Cross cut of flat
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Overscan
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Overscan
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Overscan
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Flat Fields

* Remove pixel-to-pixel variation
* Get enough counts, 10Xobject is a good rule
* You don’t want to imprint the color-

temperature of the flat lamp onto your data,
so you need to remove the overall trend
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Counts
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Remove shape with fit, typically cubic spline
Use lowest order possible to remove signature
of the lamp, not the CCD
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Normalization
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Normalized flat, fringing still present
Use the same normalization for all flats in one configuration
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Flat Fields

Fringing is caused by the light falling on the chip
interfering with itself when the chip depth is on
the same scale as the light

Depends sensitively on wavelength and chip
position, so do red flats at the position of your
object
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Flat Field Screen

Internal lamps are another
common option

Depending on flexure and
the optics, this can also be

http://www.jca.umbc.edu/telescope/UsersGuides/TakingFlats.html E'ﬁ:e C'l_| ve
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Atmospheric Dispersion
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http://www.kenrockwell.com/tech/2008-01-new.htm
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Atmospheric Dispersion

DID YOU KNOW THATT IF YOU STARE

AT THE SUN JUST AS IT SETS,

YOU CAN SEE A GREEN FLASH?
\ = —

AND FEEL A SHORP BLOW TO THE.

HEAD AND HEAR THE FAINT HM

OF ME DRMING AWAY IN YOUR
NEw TESLA ROADSTER?
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Atmospheric Dispersion
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Even in the red, dispersion losses can be significant
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Airmass 1.5

Airmass 1.2
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Lower airmass can help, but still a problem in the blue
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Use an ADC

BALL SCREW~_
FORWARD PRISM CELL—,

AFT PRISM CELL—~
DEFINING POINT~_

BALL SLIDE~_

-FORWARD RING

ADC WITHOUT CLADDING OR COVERS
LRIS ADC design ODI ADC under construction
Effective, but still some dispersion at high airmass

Slight throughput loss, possible distortions
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Use the Parallactic Angle

The parallactic angle is
the position angle on the
sky at your current
azimuth and elevation
that orients the slit
perpendicular to the
horizon, i.e., along the
dispersion direction.

http://star-www.st-and.ac.uk/~fv/webnotes/chapter7.htm

See Filippenko 1982,
PASP, 94, 715
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Extraction from the 2-D Frame

Define a profile, choose a background region to extract
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Make sure you know what you’re extracting
Make sure you know what you’re subtracting
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Extraction from the 2-D Frame

Trace: Locating the centroid over the dispersion axis
Use a low-order fit
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Extrarom the 2-D Frame
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Standard: Sum of flux in extraction window

Optimal: Each pixel in extraction window weighted
by its flux, gives actual variance estimate (Horne
1986, PASP, 98, 609) Cleans cosmic rays too
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Wavelength Lamps
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Wavelength Solution

|dentify calibration-lamp emission lines

Assign wavelengths to pixels, typically using a
polynomial fit

Use as low-order a fit as possible

Telescope/instrument flexure may require lamps
at the position of the object depending on the
precision you need-check with the instrument
scientist
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Wavelength Solutlon
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Wavelength (A)

You always have another set of lines with known wavelengths
Even if you use calibration lamps, use sky for zero-point check
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Standard Stars

The way to translate counts into flux units

Things change with position and time, so you want
a standard star as closely matched to object as possible
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Standard Stars

Oke & Gunn (1983) HD19445, HD84937, BD+26 2606, BD+17 4708

Oke (1974)

Stone (1977) Feige 34, BD+28 4211

Massey et al. (1988)

Oke (1990) Tables of AB
Massey & Gronwall (1990) magnitude vs. _
Hamuy et al. (1994) wavelength, all tied
Bessell (1999) back to Vega
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AB magnitude

Should be a minus

magnitude for a Lyrae of V= +0.03. On this basis J SIgn I
define a monochromatic magnitude

e
AB=—2.51logf, +48.60,

where f, is the flux in ergs cm ™2 s~ ! Hz ™. The constant

is chosen such that AB=V for an object with a flat
spectrum; practically, AB =V at 5480 A for objects with
relatively smooth spectra.

Oke & Gunn, 1983
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Standard Stars: Caveats

Flux is in coarse bins and often a few steps removed
from Vega

Relative spectrophotometry is feasible, when all the
calibrations are available

Absolute spectrophotometry is difficult, but you can do
pretty well with extra effort
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Telluric Absorption

Smooth spectrum star with lots of counts,
matched in airmass and resolution
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Telluric Absorption
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The Reduced Spectrum
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Not the final product. Reduction is a step, not the goal.
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Final Reminder

* Do no harm
* Look at your data

* Make sure you have all the calibrations
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