GMOS Data Reduction

Richard McDermid

Gemini Data Reduction Workshop Tucson, July 2010

Motivation for IFUs

Many objects appear extended on the sky

Aperture spectroscopy

Central velocity, dispersion, line-strength

Longslit spectroscopy

Also line-strength

Integral-Field spectroscopy

Integral-Field spectroscopy And each spectrum gives:

LINE STRENGTHS

GMOS

- Optical Integral Field Spectrograph
- Lenslet-fiber based design
- Various spectral capabilities
- Two spatial settings:
 - 'Two-slit':
 - 5"x7" FoV
 - 3,000 spectral pixels
 - 1500 spectra (inc. 500 sky)
 - 'One-slit':
 - 2.5"x3.5"
 - 6,000 spectral pixels
 - 750 spectra (inc. 250 sky)
 - Both modes have same spatial sampling of ~0.2" per fiber
- Dedicated sky fibers 60" offset for simultaneous sky

IFU Zoo: How to map 3D on 2D

GMOS Example: M32

GMOS IFU: Data Extraction

- Mask Definition File (MDF) provides sky coordinates of each fibre on CCD
- Together with wavelength calibration, provide translation from CCD (x,y) to data-cube (RA,Dec,λ)

GMOS IFU: Data Extraction

- Mask Definition File (MDF) provides sky coordinates of each fibre on CCD
- Together with wavelength calibration, provide translation from CCD (x,y) to data-cube (RA,Dec,λ)

Typical GMOS Observations

- Science observation
 - Acquisition
 - Field image -> initial offsets
 - Undispersed IFU images -> fine centering
 - Observation sequence:
 - Flat (fringing is flexure-dependent)
 - Sequence of exposures up to 1 hr
 - Flat
- Flux standard star (baseline not coincident)
- Twilight sky flat
- Daytime calibrations:
 - Arcs
 - Darks (optional)

Typical Raw GMOS Data

GMOS IFU Reduction

- Basic IRAF script on the web
- Forms the basis of this tutorial
- Good starting point for basic reduction
- Aim is to get to a combined data cube with basic calibration (wavelength, transmission...)
- Dataset:
 - SV data on NGC1068 from 2001
 - 2-slit mode IFU -> 5"x7" FoV per pointing
 - 2x2 mosaic for field coverage
 - B600 grating, targeting H-alpha and co.
 - Bias is prepared already
 - Twilight sky included
 - Flux standard also included not described here

Arranging your files - suggestion

```
Calibs/ - All baseline daytime calibrations
 YYYYMMDD/ - daycals from different dates
Science/ - All science data
 Obj1/ - First science object
    YYYYMMDD/ - First obs date (if split over >1 nights)
          Config/ - e.g. 'R400' (if using multiple configs)
       Merged - Merged science and subsequent analysis
Stars/
          - All velocity/flux standards — subdir as per science
Scripts/
```

- Crucial step is to make sure the spectra can be traced on the detector
- Use the flat lamp to find the fibers on the detector, and trace them with wavelength

```
gfreduce N20010908S0105 fl_gscrrej- fl_wavtran- fl_skysub-
fl_inter+ fl_over+ slits=both
```

NOAO/IRAF V2.14.1 rmcdermi@teracles.local Mon 13:10:19 19-Jul-2010 $Image = ergN20010908S0105_1$, Sum of columns 1441-1450 Define and Edit Apertures = 2.5025E5 Fibers are in groups of 50 – 1.00E5 inspect the gaps between groups 75000 50000 25000 0 1000 2000 4000 3000

NOAO/IRAF V2.14.1 rmcdermi@teracles.local Mon 13:11:06 19-Jul-2010 Image=ergN20010908S0105_1, Sum of columns 1441-1450

NOAO/IRAF V2.14.1 rmcdermi@teracles.local Mon 13:12:00 19-Jul-2010 func=chebyshev, order=5, low_rej=3, high_rej=3, niterate=3, grow=0 total=289, sample=289, rejected=9, deleted=0, RMS=0.02612 Aperture 2 of ergN20010908S0105_1

NOAO/IRAF V2.14.1 rmcdermi@teracles.local Mon 13:14:02 19-Jul-2010 func=chebyshev, order=5, low_rej=3, high_rej=3, niterate=3, grow=0 total=289, cample=289, rejected=6, deleted=0, RMS=0.02594

NOAO/IRAF V2.14.1 rmcdermi@teracles.local Mon 13:14:24 19-Jul-2010 func=chebyshev, order=5, low_rej=3, high_rej=3, niterate=3, grow=0 total=289, sample=289, rejected=6, deleted=0, RMS=0.02594 Aperture 78 of ergN20010908S0105_1

Rejected points

NOAO/IRAF V2.14.1 rmcdermi@teracles.local Mon 13:18:26 19-Jul-2010 ergN20010908S0105_1: GCALflat - Aperture 78 1.75E5 1.50E5 1.25E5 1.00E5 75000H Jump to CCD_2 50000 25000 500 1000 1500 2000 2500

- Following extraction, data are stored as 2D images in one MEF (one image per slit)
- This format is VERY useful for inspecting the datacube

Step 2: Prepare the flat-field

- Flat-fielding has two components:
 - Spectral FF:
 - correct for instrument spectral transmission and pixel response
 - Use black body lamp and divide by fitted smooth function
 - Spatial FF:
 - correct for the illumination function & fiber response
 - Use twilight sky exposure to renormalize the (fitremoved) flat lamp

```
gfresponse ergN20010908S0105 ergN20010908S0105_resp112
    sky=ergN20010908S0112 order=95 fl_inter+ func=spline3
    sample="*"
```

Step 2: Prepare the flat-field

Fit to the flat lamp

How can we re-sample the data to have linear wavelength axis?
 ⇒ Find dispersion function: relationship between your pixels and absolute wavelength

• First step: Identify lines in your arc frame

0.00	_		
♥ ♥ ♥		X xterm	
Reference image = ergl	N20010908S0108_0	L, New image = ergN200109	08S0108_001, Refit = yes -
Image Data	Found Fit 1	c Shift User Shift Z Sh	ift RMS
ergN20010908S0108_001 -	Ap 375 34/34	5/46 -0.0492 0.02	31 4,22E-6 0,136
Fit dispersion function	interactively?	nolyesINOIYES) (no); no	/ \
ergN20010908S0108_001 -		6/46 0.0369 -0.01	.72 -3.1E-6 / 0.134 \ L_
Fit dispersion function			70 0 005 0 / 0 47
ergN20010908S0108_001 -		6/46 -0.0211 0.009	78 2.02E-6 / 0.13 \
Fit dispersion function			00 4.05 0 0.405
ergN20010908S0108_001 -		6/46 0.0425 -0.01	96 -4.2E-6 0.125
Fit dispersion function ergN20010908S0108_001 -		6/46 0.0913 -0.04	21 -9,1E-6 0,127
Fit dispersion function			21 -3,11-0 0,127
ergN20010908S0108_001 -		6/46 -0.141 0.0	65 1,40E-5 0,129
Fit dispersion function			00 1.402 0 0.120
ergN20010908S0108_001 -		6/46 -0.0304 0.0	14 3.09E-6 0.133
Fit dispersion function			
ergN20010908S0108_001 -		6/46 0 . 115 -0.0	53 -1.2E-5 0.132
Fit dispersion function	interactively?	nolyesINOIYES) (no): no	
ergN20010908S0108_001 -	Ap 367 46/46	6/46	92 1.29E-\$ 0.136
Fit dispersion function	interactively?	nolyesINOIYES) (no): no	
noergN20010908S0108_001			0312 -6.8 <mark>E-6 0.135 </mark>
Fit dispersion function		nolyesINOIYES) (no):	
ergN20010908S0108_001 -		6/46 -0.0548 0.02	52 5,61E-6 0,127
Fit dispersion function			AZ 0.05 F A.477
ergN20010908S0108_001 -		6/46 0,222 -0,1	03 -2,2E-5 0,133
Fit dispersion function			90 1 E9E E A 177
ergN20010908S0108_001 - Fit dispersion function			98 1,52E-5 0,133
ergN20010908S0108_001 -		6/46 -0,253 0,1	17 2,53E-5 0,138
Fit dispersion function			1, 5:000 b 4:100
ergN20010908S0108_001 -		6/46 0 .1 66 -0 . 07	67 -1.7E-5 0.135
Fit dispersion function			,,_
ergN20010908S0108_001 -		6/46 0,101 -0,04	66 -1.0E-5 0.131
Fit dispersion function			
ergN20010908S0108_001 -	Ap 359 46/46	6/46	12 2.44E-\$ 0.127
Fit dispersion function	interactively?	nolyesINOIYES) (no): no	1 1
ergN20010908S0108_001 -		6/46 0 .1 61 -0.07	42 -1.6E-5 0.133
Fit dispersion function			40 7 045 0 0 474
ergN20010908S0108_001 -		6/46 -0.0389 0.0	18 3.91E-6 0.134
Fit dispersion function			EZ 0.0E C 0.4ZE
ergN20010908S0108_001 -		6/46 0.0983 -0.04	53 -9.9E-6\ 0.135
Fit dispersion function ergN20010908S0108_001 -		norgesimurres) (no): 6/46 -0.114 0.05	24 1.15E-5 0.135
Fit dispersion function			24 1.135-3 0.133
ergN20010908S0108_001 -		6/46 0.0904 -0.04	17 -9.1E-6 0.132
Fit dispersion function			1, 0,12 0 0,132
ergN20010908S0108_001 -		6/46 -0.154 0.0	71 1.56E-5 \ 0.138 /
Fit dispersion function			1.422
ergN20010908S0108_001 -		6/46 -0.106 0.04	89 1.05E-5 \ 0.131 /
Fit dispersion function		nolyesINOIYES) (no):	\ ' /
ergN20010908S0108_001 -	Ap 351 46/46	6/46 -0.0575 <u>0</u> .02	65 5.84E-6 \Q.133
Fit dispersion function	interactively?	nolyesINOIYES)(no): █	

RMS ~0.1 pix

- First solution used as starting point for subsequent fibers
- Usually robust, but should be checked carefully
- Often best to edit the reference line list for added robustness
- Two slits are treated separately
 - need to repeat

Checking the wavecal

- Testing quality of wavelength calibration is critical
- Not always obvious from your science data
 - May not have skylines
 - How to spot systematic nonlinearities?
- Basic check is to apply calibration to the arc itself, and inspect the 2D image for alignment

Checking the wavecal

- Twilight sky is also an excellent end-to-end test
 - Reduce it like your science data
 - Check alignment of absorption features
 - Can also compare with solar spectrum

'Fringing' from bad flat fielding

Such effects would be completely missed in long-slit data....

Step 4: Reduce science data!

- You have now the following:
 - Bias
 - Spectral trace
 - Flat-field
 - Wavelength solution
- Now run gfreduce to:
 - Bias-subtract
 - Extract traces
 - Apply flat-fielding
 - Reject cosmic rays (via Laplacian filter)
 - Apply wavelength solution

```
gfreduce N20010908S0101 fl_inter- verb+ refer=ergN20010908S0105
    recenter- trace- fl_wavtran+ wavtran=ergN20010908S0108
    response=ergN20010908S0105_resp112 fl_over+ biasrows="3:64"
    slits=both fl_gscrrej+
```

Co-Adding Data Cubes

Two approaches:

- 1. Dithering by non-integer number of spaxels:
 - Allows over-sampling, via 'drizzling'
 - Resampling introduces correlated noise
 - Good for fairly bright sources

2. Dither by integer number of spaxels

- Allows direct 'shift and add' approach
- No resampling:- better error characterisation
- Assumes accurate (sub-pixel) offsetting
- Suitable for 'deep-field' applications

Over-sampling

The deep field approach

- Multiple exposures of a single field of view
- Aiming at pushing the detection limits of an instrument
- Systematic dithering of the exposures
 - Allows to easily spot and eliminate artefacts
 - Reduces the flat-field errors
 - Noise is uncorrelated (as far as possible)
- Strategy for data cubes identical to the one for images

Determine the relative positioning

- Trust the telescope pointing / header information:
 - Often have sub-arcsecond sampling and you want subspaxel accuracies...
 - Telescope pointing accuracy maybe not good enough.
 - For 'invisible' sources, likely the only way to co-add
 - Positioning uncertainty will degrade the PSF
- Obtain the information from the data:
 - Use a "sharp" morphological feature (e.g. the nucleus of a galaxy, a star...) if available
 - Using centroids or spatial Gaussian profile fitting to get the position of the punctual reference source
 - Use contour plots of a reconstructed image to get the relative positioning between two data cubes

Determine the relative positioning

Difficulties:

- Fairly subjective method
- Changes in observing conditions mess up things!
- Noise in the individual exposures does not help

Normalization

- Relative normalization
 - Transparency can change between exposures
 - Need to track these changes and correct for them (the absolute radiometric calibration of the data does not take care about them)
- Absolute normalization of the exposures
 - Best way = to use of spectro-photometric standard stars
 - Cross-check with images from the same field of view
 - Collapse the data cube with weights corresponding to the image filter
 - Compare the data cube with the image

Normalization

Example: kinematics of the \rightarrow some velocity components are not present in one of the filters but appear in the second one

Spectral Resolution

- Variations in spectral PSF across field
- Need to homogenize before merging
- Measured using twilight sky
- Broaden each spectrum: $\sigma^2_{goal} = \sigma^2_{measured} + \sigma^2_{difference}$

Ready to co-add...

- Data cubes are now:
 - Linearized in spatial and spectral domain
 - Share a common spatial coordinate frame
 - Have a uniform spectral resolution across the FoV
 - Have a known common normalization
 - May have relative weights (If very different S/N)

- Ideally this would be a single transformation from the 'raw' data to the new frame, applying the wavelength calibration and spatial distortion correction at the same time
- More commonly, multiple transformations are used
- Method here is not optimal, but starting point

Merge Data Cubes

- Create 3D cubes and inspect image planes via ds9
- Measure pixel position of reference point
- Provide new spatial origin via header keywords
- Feed cubes into gemcube

Merge Data Cubes

- Create 3D cubes and inspect image planes via ds9
- Measure pixel position of reference point
- Provide new spatial origin via header keywords
- Feed cubes into gemcube

Merge Data Cubes

- Create 3D cubes and inspect image planes via ds9
- Measure pixel position of reference point
- Provide new spatial origin via header keywords
- Feed cubes into gemcube

Extras: Atmospheric Refraction

- Atmospheric refraction = image shifts as function of wavelength
- Shifts largest at blue wavelengths
- Can be corrected during reduction by shifting back each λ plane
- Convenient to do this during merging (interpolating anyway...)

Extras: Atmospheric Refraction

- Spectral slope can appear to change between spaxels around the peak
- Can reduce the effect for point sources by extracting 1D spectrum within an aperture covering red and blue flux.

Extras: Spatial Binning

Extras: Spatial Binning

