Science from the optical spectrograph GRACES (Gemini Remote Access to CFHT ESPaDOnS Spectrograph)

GRACES observing modes

(Figures from Chené+2014)

One fiber (object-only): R~67500

Two fiber (object+sky): R~40000

GRACES useful wavelength range: $\sim 420-1010 \mathrm{~nm}$; high sensitivity in the red

Data reduction:

OPERA - Open source Pipeline for ESPaDOnS Reduction and Analysis

Data Reduction and Analysis for Graces

OPERA:

CFHT-supported software (in C) for ESPaDOnS reduction.

Extracted ID spectra output as multiextension FITS files.

* OPERA-reduced spectra made available to users through the Gemini archive
http://www.cfht.hawaii.edu/en/projects lopera/

DRAGRACES:

IDL pipeline based on the Gemini quicklook tool.

Extracted ID spectra output as multiextension FITS files, with each echelle order in its own extension.

Support at Gemini Data Reduction User Forum: http://drforum.gemini.edu/
https://github.com/AndreNicolasChene/ DRAGRACES

Data reduction comparison:

*** A comparison from early 2018 shows that once the kinks were worked out, the two pipelines produce nearly identical spectra. Thus either pipeline should be sufficient for your science program.

Spectrum of v Vir from our 2016A program, extracted using both pipelines:

Validation via comparison to APOGEE:

6 stars from our program (PI: Carlin, GN-2016A-Q-67) in APOGEE DRI4. Our GRACES stellar parameters, abundances agree with APOGEE.

Science results from GRACES*

Elements with spectral lines in GRACES spectra:

alpha: O, Mg, Si, Ca, Ti (I \& II)
Fe-peak:V, Cr, Mn, Co, Ni, Zn
Li, Cu
light/odd-Z: $\mathrm{Na}, \mathrm{Al}, \mathrm{K}$
neutron-capture: Rb,Y, Zr, Ba, La, Eu, Nd (both s- and r-process)

First light spectrum of A3 star HIP 57258 (from Chene+2014):

* Not a comprehensive list - apologies if I left out your favorite!

KIC 9821622 : An interesting lithium-rich giant in the Kepler field (Jofre+2015,A\&A 584, L3)

Early science target during on-sky testing
$\mathrm{A}(\mathrm{Li})=1.80$, high alpha $([\alpha / \mathrm{Fe}]=$ 0.3 I), enhanced Fe-peak, r-process \rightarrow contamination by supernova ejecta?

GRACES observations of young [$\alpha / \mathrm{Fe}]$ rich stars (Yong+2016, MNRAS, 459, 487)

4 massive, young (< 4 Gyr) stars with $[\alpha / \mathrm{Fe}]>0.2$, suggested to be blue stragglers

Abundances look "normal", but IR excess in SEDs suggests possible
binaries

A hot Jupiter orbiting a 2-Myr-old solarmass T Tauri star (Donati+2016, Nature, 534, 662; Donati+20I7, MNRAS, 465, 3343)

2I/75 RV epochs with GRACES, plus spectropolarimetry (ESPaDOnS, NARVAL) to measure magnetic activity
\rightarrow Hot Jupiters can migrate inwards over short timescales

Gas-phase Absorptions of C60+:A New Comparison with Astronomical Measurements (Walker+2016,ApJ, 83I, I30)

Lab measurements of DIB wavelengths confirmed in clouds along lines of sight toward bright stars

An unusual white dwarf star may be a surviving remnant of a subluminous Type la supernova (Vennes+20I7, Science, 357, 680)

Hypervelocity WD with unusual abundances
\rightarrow a "partially burnt remnant" ejected in a type lax SN event?

Signatures of rocky planet engulfment in

 HAT-P-4. Implications for chemical tagging studies (Saffe+20I7,A\&A, 604, 4)HAT-P-4 is ~ 0. 1 dex more metalrich than its binary companion, with ~0.3 dex higher Li abundance
\rightarrow This, plus abundance trends with condensation temperature, suggests accretion of a giant planet

Metallicity Variations in the Type II Globular Cluster NGC 6934 (Marino+20I8,ApJ, 859, 81)

Stars along anomalous RGB sequence are ~ 0.2 dex higher in [$\mathrm{Fe} / \mathrm{H}]$ than the typical sequence, but no light-element ($\mathrm{C}, \mathrm{O}, \mathrm{Na}$) variation
\rightarrow Metallicity variation in NGC 6934

Gemini/GRACES spectroscopy of stars in

 Tri II (Venn+20I7, MNRAS, 466, 374I)Observed 2 stars ($\mathrm{V}=\mathrm{I} 7.3, \mathrm{~V}=\mathrm{I} 8.8$), found Tri II has metallicity spread characteristic of dwarf galaxies

Ca abundances typical for dSphs, but Mg is low \rightarrow inhomogeneous mixing or yields from few SNe ?

${ }_{[\mathrm{Fe} / \mathrm{H}]}^{-3}$

Chemical Abundances in the Ultra-Faint Dwarf Galaxies Grus I and Triangulum II: Neutron-Capture Elements as a Defining Feature of the Faintest Dwarfs (Ji+2018, ApJ, accepted, arXiv:I809.02 I82)

Both have low neutron-capture abundances. GCs are typically halo-like in neutron-capture elements \rightarrow is the low abundance in dwarf galaxies a distinguishing feature?

Sagittarius stream high-resolution spectra

Model: Law \& Majewski (2010)
Gemini+GRACES (R~67,500) spectra of 42 LAMOST-
selected Sagittarius M-giants $\left(|5.5<g<18.1 ;| I .2<K_{s}<12.6\right)$

Metallicities from GRACES spectra - median [Fe/H] is lower in leading arm stars than in the trailing tail leading trailing

Carlin+20I8, ApJL, 859, IO
[Fe / H]

Alpha elements in the Sgr core vs. the stream

Not all alpha elements are the same:

 hydrostatic α-elements vs. explosive α-elements
hydrostatic

explosive

HEx ratio $\left(\left[\alpha_{\text {hydrostatic }} / \alpha_{\text {explosive }}\right]\right.$, or $\left.\left[\alpha_{h / e x}\right]\right)$

Blue:
LMC Magenta: Fornax Green: Sgr core

Carlin+20I8,ApJL, 859, I0

HEx ratio $\left(\left[\alpha_{\text {hydrostatic }} / \alpha_{\text {explosive }}\right]\right.$, or $\left.\left[\alpha_{\mathrm{h} / \mathrm{ex}}\right]\right)$

A flexCE* chemical evolution model with IMF slope -2.75 (i.e., steeper than Salpeter), SNla delay time I. 2 Gyr, and strong outflow matches the properties of Sgr stream stars

Carlin+20I8,ApJL, 859, I0

Approved GRACES large \& long program now underway (?) - "Chemistry of new metal-poor stars found in the Pristine Survey"; PIVenn; GN-2019A-LP-I02

- Detailed chemical abundances of alreadyconfirmed metal-poor stars

GRACES provides high-resolution ($\mathrm{R}=40,000$ or 67,500) echelle spectroscopy at Gemini North, enabling a variety of science projects that benefit from its sensitivity/throughput and broad useable wavelength range.

