
UNIX/IRAF V2.12 Site Manager’s Guide

Doug Tody
Mike Fitzpatrick

IRAF Group
National Optical Astronomy Observatory†

June 1989
Revised May 2002

ABSTRACT

An IRAF site manager is anyone who is responsible for installing and
maintaining IRAF at a site. This document describes a variety of site manage-
ment activities, including configuring the device and environment tables to pro-
vide reasonable defaults for the local site, adding interfaces for new devices,
configuring and using IRAF networking, the installation and maintenance of
layered software products (external packages), and configuring a custom site
LOCAL package so that local software may be added to the system. Back-
ground information on multiple architecture support, shared library support, and
the software management tools provided with the system is presented. The pro-
cedures for rebooting IRAF and performing a sysgen are described. The host
system resources required to run IRAF are discussed.

May 4, 2002

†Operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with the
National Science Foundation.

Contents

1. Introduction ... 1

2. System Setup .. 2
2.1. Installing the System... 2
2.2. Configuring the Device and Environment Tables .. 2

2.2.1. Environment definitions... 2
2.2.2. The template LOGIN.CL... 3
2.2.3. The TAPECAP file .. 3

2.2.3.1 Configuring new TAPECAP entries... 4
2.2.3.2 More on TAPECAP parameters ... 5

2.2.4. The DEVICES.HLP file .. 7
2.2.5. The TERMCAP file ... 7
2.2.6. The GRAPHCAP file... 7

2.2.6.1. Graphics hardcopy devices ... 8
2.2.6.2. Image display frame buffers ... 8
2.2.6.3. Graphics terminals .. 9

2.2.7. Configuring IRAF networking... 9
2.2.8. Configuring the IRAF account .. 11
2.2.9. Configuring user accounts for IRAF ... 11

2.3. Tuning Considerations .. 11
2.3.2. Stripping the system to reduce disk usage .. 12

3. Software Management .. 12
3.1. Multiple architecture support .. 12
3.2. Shared libraries.. 13
3.3. Layered software support.. 15
3.4. Software management tools .. 15
3.5. Modifying and updating a package .. 16
3.6. Installing and maintaining layered software... 17
3.7. Configuring a custom LOCAL package ... 18
3.8. Updating the full IRAF system... 19

3.8.1. The BOOTSTRAP... 19
3.8.2. The SYSGEN... 20
3.8.3. Localized software changes... 20

4. Graphics and Image Display .. 22
4.1. The X11 environment ... 22
4.2. Vector graphics capabilities .. 22
4.3. Image Display capabilities.. 23
4.4. Using the workstation with a remote compute server.. 24

5. Interfacing New Graphics Devices .. 24
5.1. Graphics terminals .. 24
5.2. Graphics plotters ... 25
5.3. Image display devices ... 25

6. Host System Requirements... 25
6.1. Memory requirements ... 26
6.2. Disk requirements ... 26

- 2 -

6.3. Diskless nodes... 26

Appendix A. The IRAF Directory Structure .. 27

UNIX/IRAF V2.12 Site Manager’s Guide

Doug Tody
Mike Fitzpatrick

IRAF Group
National Optical Astronomy Observatory†

June 1989
Revised May 2002

1. Introduction
The IRAF system should be runnable as soon as it is installed, but there remain various

things one might want to do to tailor the system to the local site. Examples of the kinds of cus-
tomizations one might want to make are the following.

� Edit the default IRAF environment definitions to provide reasonable defaults for your
site.

� Make entries in the device descriptor tables for the devices in use at your site.
� Code and install new device interfaces.
� Enable and configure IRAF networking, e.g., to permit remote image display, tape

drive, or file access.
� Perform various optimizations, e.g., stripping the system to reduce disk usage.
� Extend the system by installing layered software products.
� Configure a custom LOCAL package so that locally developed software may be

installed in the system.

Beginning with IRAF V2.12 the new install procedures may handle some of this post-
install configuration automatically, however the site manager is responsible for performing these
duties once the system is installed on the system. This document provides sufficient back-
ground information and instructions to guide the IRAF site manager in performing such custom-
izations. Additional help is available via the adass.iraf newsgroups on USENET, by sending
mail to iraf@noao.edu, or via the IRAF HOTLINE (520/318-8160). Contributions of
interfaces developed for new devices, or any other software of general interest, are always wel-
comed.

The IRAF software is organized in a way which attempts to isolate, so far as possible, the
files or directories which must be modified to tailor the system for the local site. Most or all
changes should affect only files in the local, dev, and hlib (unix/hlib) directories. Layered
software products, including locally added software, reside outside of the IRAF core system
directory tree and are maintained independently of the core system.

A summary of all modifications made to the IRAF system for a given IRAF release is
given in the Revisions Summary distributed with the system. Additional information will be
found in the system notes files (notes.v211, notes.v212, etc.) in the iraf/local and iraf/doc direc-
tories. This is the primary source of technical documentation for each release and should be
consulted if questions arise regarding any of the system level features added in a new release of
the core system.

†Operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with the
National Science Foundation.

- 2 -

2. System Setup

2.1. Installing the System
The procedure for installing or updating a UNIX/IRAF system is documented in the IRAF

Installation Guide distributed with each system. A custom installation guide is provided for
each platform on which IRAF is supported. In short, an IRAF CDROM or network distribution
is obtained and installed according to the instructions. The result is a full IRAF system, includ-
ing both sources and executable binaries for the architectures to be supported. The system will
have been modified to reflect the new IRAF root directory and should run, but will otherwise be
a generic IRAF distribution. To get the most out of an IRAF installation it will be necessary to
perform some of the additional steps outlined in the remainder of this document.

2.2. Configuring the Device and Environment Tables
Teaching IRAF about the devices, network nodes, external programs, and other special

resources available at a site is largely a matter of editing a standard set of device descriptor and
environment setup files, all of which are simple text files. The versions of these files provided
with the distribution are simply those in use on the NOAO system from which the distribution
files were made, at the time the distributions were generated. Hence while these files may be
useful as examples of properly configured descriptor files, the defaults, and many specific device
entries, will in many cases be meaningless for a different site. This is harmless but it may be
confusing to the user if, for example, the default printer doesn’t exist at your site. Where possi-
ble default values are set to be meaningful for sites outside of NOAO, e.g. the default printer is
’lp’ which is simply the default printer for the system rather than some NOAO-specific device.

The device and environment files also contain much material which any site will need, so
care must be taken when editing the files. Important changes may be made to the global por-
tions of these files as part of any IRAF release. To facilitate future updates, it is wise where
possible to isolate any local changes or additions so that they may simply be extracted and
copied into the new (distributed) version of the file in a future update.

2.2.1. Environment definitions
Since IRAF is a machine and operating system independent, distributed system it has its

own environment facility apart from that of the host system. Host system environment variables
may be accessed as if they are part of the IRAF environment (which is sometimes useful but
which can also be dangerous), but if the same variable is defined in the IRAF environment it is
the IRAF variable which will be used. The IRAF environment definitions, as defined at CL
startup time, are defined in a number of files in the iraf$unix/hlib directory. Chief among these
is the zzsetenv.def file which defines the default hardcopy devices, image frame buffer, buffer
sizes, etc. Additional user modifiable definitions may be given in the template login.cl file (see
§2.2.2).

The zzsetenv.def file contains a number of environment definitions. Many of these define
IRAF logical directories and should be left alone. Only those definitions in the header area of
the file should need to be edited to customize the file for a site. It is the default editor, default
device, etc. definitions in this file which are most likely to require modification for a site.

If the name of a default device is modified, the named device must also have an entry in
the termcap file (terminals and printers used for text hardcopy) or the graphcap file (graphics
terminals and image displays and graphics hardcopy printers) in iraf/dev. There must also be an
editor.ed file in dev for the default editor; edt, emacs, and vi are examples of currently sup-
ported editors.

Sample values of those variables most likely to require modification for a site are shown
below.

- 3 -

set editor = "vi"
set printer = "lp"
set stdplot = "lp"
set stdimage = "imt512"

For example, you may wish to change the default editor to "emacs", the default printer to
"lw5", or the default image display to "imt1024". Note that the values of terminal and stdgraph,
which also appear in the zzsetenv.def file, have little meaning except for debugging processes
run standalone, as the values of the environment variables are reset automatically by stty at
login time. The issues of interfacing new graphics and image display devices are discussed
further in §5.

2.2.2. The template LOGIN.CL
The template login.cl file hlib$login.cl, is the file used by mkiraf to produce the user

login.cl file. The user login.cl file, after having possibly been edited by the user, is read by the
CL every time a new CL is started, with the CL processing all environment and task definitions,
package loads, etc., in the login file. Hence this file plays an important role in establishing the
IRAF environment seen by the user.

Examples of things one might want to change in the template login.cl are the commented
out environment definitions, the commented out CL parameter assignments, the foreign task
definitions making up the default user package, and the list of packages to be loaded at
startup time. For example, if there are host tasks or local packages which should be part of the
default IRAF operating environment at your site, the template login.cl is the place to make the
necessary changes.

2.2.3. The TAPECAP file
Since V2.10 IRAF magtape devices are described by the "tapecap" file, dev$tapecap.

This replaces the "devices" file used in earlier versions of IRAF. The tapecap file describes
each local magtape device and controls all i/o to the device, as well as device allocation.

In V2.10 IRAF there was one tapecap file per IRAF installation and all client nodes shar-
ing the same central version installation required device entries in the global tapecap file. Since
V2.11 this scheme was generalized to allow each host to have its own private tapecap file, with
a fallback to the generic tapecap file if no host-specific file is found. The system will look first
for a configuration file called tapecap.node where node is the hostname of the server the
tapecap file describes, if that is not found the default tapecap file will be used. In this way a
separate tapecap file can be created for each node allowing a name such as ’mta’ to always refer
to the first tape on that machine regardless of whether it varies in type from node to node. On
the other hand, sites may wish to maintain only a single tapecap file with generic names
describing each of the different types of tapes available in the local network. In this case it is
wise to also configure the devices.hlp file described in the next section to document the
names of the devices to be used to avoid any confusion.

The tapecap files included in the distributed system include some generic device entries
such as "mtxb1" (Exabyte unit 1, Sun ST driver), "mthp2" (HP7880 9 track drive, unit 2), and
so on which you may be able to use as-is to access your local magtape devices. The exact list
of available device types depend on the platform in question. Most likely you will want to add
some device aliases, and you may need to prepare custom device entries for local devices.
There must be an entry in the tapecap file for a magtape device in order to be able to access the
device from within IRAF. All magtape device names must being with the two-letter prefix
"mt".

- 4 -

2.2.4. Configuring new TAPECAP entries
The tapecap file is text data base file (similar to the termcap and graphcap files)

describing the capabilities and device names associated with a particular tape device on the sys-
tem. For information on the format of the file see the termcap(5) man page. A listing of all
recognized fields is given in the program comments for the tape driver in iraf$unix/os/zfiomt.c
(more on this later). In general, creating a new tapecap entry for a device is a matter of finding
a similar entry in the distributed file, and either using that directly if the device names are
correct, or simply modifying it slightly to change device names so it will be appropriate for a
drive on a different SCSI unit or using a different host driver. On occasion, other tapecap
parameters will need to be added to correct for specific behavior that affects appending new data
and tape positioning.

A tapecap entry for a device is usually divided into three different sections: a high-level
entry giving the name of the drive as known to IRAF, a mid-level section defining the host dev-
ice names associated with the drive, and a low-level generic section describing capabilities asso-
ciated with all instances of a particular type of drive (DAT, Exabyte, 9-track, etc.). The starting
point for the tapecap entry is whatever iraf name was used to access the drive. This is usually
something like ’mta’, ’mtb’, etc but can be any valid name beginning with an ’mt’ prefix and
which defines all the needed parameters. When searching for a particular tapecap parameter the
first occurrence of that parameter in the entry is used by the system, and a complete tapecap
description is composed of all the entries which are linked by the :tc continuation fields.

As an example consider a typical entry for a DAT drive on unit 0 known to a
Solaris/IRAF system as ’mta’, the high-level entry would look like:

mta|Generic DAT entry, unit 0| :tc=mtst0.solaris.dat:

Here we define the iraf name (which must begin with an ’mt’ prefix) along with any aliases del-
imited by the ’|’. The :tc field continues the tapecap at the next entry named "mtst0.solaris.dat":

mtsd0|mtst0.solaris.dat|DAT drive on Solaris:\
:al=0 0bn 0cb 0cn 0hb 0hn 0lb 0ln 0mb 0mn 0u 0ubn \
0b 0c 0cbn 0h 0hbn 0l 0lbn 0m 0mbn 0n 0ub 0un:\
:dv=0bn:lk=0:tc=solaris-dat:

This entry is primarily used to specify the host device names associated with the drive. The :al
(aliases) field is a list of all device aliases in the UNIX /dev or /dev/rmt directories associated
with this device. This is needed so the tape allocation task can properly change the permissions
and ownership on each device name which accesses that tape drive. The :dv (device) field is the
no-rewind device name and is the device file actually opened for tape I/O; this must be a no-
rewind device since IRAF will maintain the tape position automatically, the actual value typi-
cally depends on the density of the tape, whether compression is used etc. The :lk is used to
build the name of a "lok file" that is created in the /tmp directory of the machine hosting the
drive that will be used to maintain the tape status and position information, this value should be
unique for each drive on the machine to avoid conflicts. When configuring a new tapecap entry,
all one usually needs change is the iraf device name in the first section and the host device
names in the :dv, :al and :lk fields of this entry. Finally this section continues the entry with a
:tc field saying to branch to the "solaris-dat" generic entry:

solaris-dat|sdat-60m|Sun/Solaris DAT drive:\
:dt=Archive Python 4mm Helical Scan tape drive:tt=DG-60M:\
:ts#1274378:bs#0:mr#0:or#65536:fb#10:fs#127000:mf:fe#2000:

The low-level entry here is where parameters relating to all drives of a particular type using a
particular host tape driver are maintained, e.g. the record sized used for tape I/O, positioning
capabilities, filemark sizes, etc. These will rarely need to be changed from the distributed
entries unless you are using a new tape driver or a different model tape drive, , or a type of tape
cartridge with a capacity different than that given ("tz"). See the section below for a full list of
the tapecap parameters and their meanings.

- 5 -

For a more complicated example let’s consider how to add an entry for an Exabyte 8505
drive given an existing entry for an Exabyte 8200 device. We can ignore for now the low-level
entry found in the distributed tapecap and concentrate on what fields actually need changing in
this case. We begin with the high-level entry defining the iraf names, we will need one name
for the drive in each of three modes (8200 mode, 8500 mode, and 8500 mode w/ compression):

mta|Exabyte 8200, Unit 0| :tc=mtst0.solaris.exb8200:
mtb|mtblo|Exabyte 8505, Unit 0| :tc=mtst0.exb8505-lo:
mtbhi|Exabyte 8505, Unit 0| :tc=mtst0.exb8505-hi:
mtbc|Exabyte 8505, Unit 0| :tc=mtst0.exb8505-c:

The new iraf names are therefore mtb (8200 mode), mtbhi (8500 mode), and mtbc (8500 +
compression). These all link to the second level entry where we make use of the existing
EXB8200 entry:

mtsee0|mtst0.solaris.exb8200|Exabyte 8200 drive on Solaris:\
:al=0 0bn 0cb 0cn 0hb 0hn 0lb 0ln 0mb 0mn 0u 0ubn \
0b 0c 0cbn 0h 0hbn 0l 0lbn 0m 0mbn 0n 0ub 0un:\
:dv=0bn:lk=0:tc=solaris-exb8200:

mtsee0lo|mtst0.exb8505-lo|:dv=0lbn:tc=mtsee0:
mtsee0hi|mtst0.exb8505-hi|:dv=0mbn:fs#48000:ts#5000000:tc=mtsee0:
mtsee0hic|mtst0.exb8505-c|:dv=0cbn:fs#48000:ts#5000000:tc=mtsee0:

Note that the names we just created link to the one-line entries below the standard EXB 8200
entry ’mtst0.solaris.exb8200’ (the mtb entry could just as legally have linked to this entry right
away). Since all we need to change is the :dv field (because we’re opening the same drive, but
by using a different name the host system accesses it in the appropriate mode) we can simply
make a new entry point, change the :dv field and then link to the existing entry where all the
rest of the parameters will be the same. In this case we’ve also reset the :fs and :ts fields to
override the values in the low-level Exabyte description since these have also changed for the
new model drive. If we wished to modify this entry for a drive on e.g. unit 2 all we would need
to do is modify the various :dv, :al, and :lk fields so the device names are correct, and change
the name of the tapecap entry points so we avoid any confusion later on.

When configuring a new tapecap and encounter problems it is useful to turn on status out-
put so you get a better idea of where the tape is positioned and what’s going on, to do this use
the :so field as follows:

cl> set tapecap = ":so=/dev/tty"

Alternatively, the :so can be specified on the command line, e.g.

cl> rewind "mta[:so=/dev/tty]"

Any other tapecap parameters can be specified in the same way. The quotes around the tape
name are required if any special characters such as this can also be directed to an Xtapemon
server running either locally or remotely, see the xtapemon man page for details. Help with
configuring new tapecap entries is available from IRAF site support.

2.2.4.1. More on TAPECAP parameters
As we see from the previous section, in most cases the only tapecap parameters that need

to be changed are :dv, :al, and maybe :lk. There are however a number of other tapecap param-
eters that sometimes must be modified to describe how the tape device operates or to optimize
I/O to the device. A full listing of the available tapecap parameters can be found in the program
comments for the iraf tape driver iraf$unix/os/zfiomt.c; we will only briefly discuss a few here.
Any changes you make with the parameters mentioned here can usually go in the low-level
tapecap entry so they will "fix" all drives of the same type, however you may also wish to
modify just the high-level entry to change only one drive. For example:

mta|Generic DAT entry, unit 0| :se:ow:tc=mtst0.solaris.dat:

would add the ":se:ow" fields (discussed below) to only the mta device.

- 6 -

Boolean tapecap parameters may be negated if you are linking to an existing entry which
already defines a particular field. For example, in

mta|Generic DAT entry, unit 0| :se@:tc=mtst0.solaris.dat:

the ’@’ character would negate the :se field regardless of whether it is defined elsewhere in the
entry.

One of the most common problems encountered is that only odd-numbered images on a
tape are readable by the drive. The solution to this is usually to add a se to the tapecap to tell
the driver that the tape will position past the EOT in a read. Another common problem is with
appending new data to an existing tape, this sometimes requires the addition of a ow field to tell
the driver to backspace and overwrite the EOT when appending. A re is sometimes needed if
there is a problem sensing the EOT when reading all images from a tape, this tell the driver that
a read at EOT returns an ERR.

The parameter fb may be specified for a device to define the "optimum" FITS blocking
factor for the device. Unless the user explicitly specifies the blocking factor, this is the value
that the V2.11 wfits task will use when writing FITS files to a tape. Note that for cartridge dev-
ices a FITS blocking factor of 22 is used for some devices; at first this may seem non-standard
FITS, but it is perfectly legal, since for a fixed block size device the FITS blocking factor serves
only to determine how the program buffers the data (for a fixed block device you get exactly the
same tape regardless of the logical blocking factor). For non-FITS device access the magtape
system defines an optimum record size which is used to do things like buffer data for cartridge
tape devices to allow streaming.

Some devices, e.g. most Exabyte drives, are slow to switch between read and skip mode,
and for files smaller than a certain size, when skipping forward to the next file, it will be faster
to read the remainder of the file than to close the file and do a file skip forward. The fe parame-
ter is provided for such devices, to define the "file equivalent" in kilobytes of file data, which
can be read in the time that it takes to complete a short file positioning operation and resume
reading. Use of this device parameter in a tape scanning application such as rfits can make a
factor of 5-10 difference in the time required to execute a tape scan of a tape containing many
small files.

On a device such as most cartridge tape devices where backspacing is not permitted or
does not work reliably it may be necessary to set the nf parameter to tell the driver to rewind
and space forward when backspacing to a file.

Lastly, when configuring a new low-level generic entry for the device it is sometimes
necessary to change the various size parameters for the drive. These include:

bs device block size (0 if variable)
fb default FITS blocking factor (recsize=fb*2880)
fe time to FSF equivalent in file Kb
mr maximum record size
or optimum record size
fs approximate filemark size (bytes)
ts tape capacity (Mb)
dn density

All but the last three fields are used either by the driver or a task when reading or writing a
tape, the :fs, ts and :dn fields are used by tape monitoring tasks such as xtapemon to compute
the approximate amount of tape used and do not affect tape operation. For devices which are
capable of variable block size I/O (i.e. almost anything but a cartridge tape) it is best to leave
the bs field at zero. The maximum and optimum record sizes, the mr and or fields, are usually
determined by the host tape driver used. Values for these can either be found in the host driver
man page or it’s system include file.

- 7 -

2.2.5. The DEVICES.HLP file
All physical devices that the user might need to access by name should be documented in

the file dev$devices.hlp. Typing

cl> help devices

or just

cl> devices

in the CL will format and output the contents of this file. It is the IRAF name of the device, as
given in files such as termcap, graphcap, and tapecap, which should appear in this help file fol-
lowed by a brief description of the device, see the distributed file as an example. Starting with
V2.10 this file in no longer used to configure tape devices, it is informational only. While not
required for an operational runtime system, it is recommended that site managers document dev-
ices in this file for their users as well as for their own use when later updating the system.

2.2.6. The TERMCAP file
There must be entries in this file for all local terminal and printer devices you wish to

access from IRAF (there is currently no "printcap" file in IRAF). The entry for a printer con-
tains one special device-specific entry, called DD. This consists of three fields: the device
name, e.g. "node!device", the template for the temporary spoolfile, and the UNIX command to
be used to dispose of the file to the printer. On most UNIX systems it is not necessary to make
use of the node name and IRAF networking to access a remote device since UNIX lpr already
provides this capability, however it might still be useful if the desired device does not have a
local lpr entry for some reason. Printer devices named in this file may be used for text hard-
copy output such as you get from the LPRINT task, graphics hardcopy devices are configured
by editing the graphcap file discussed in the next section.

As an example, assume we have a printer known to the sun as ’lw5’, the termcap entry
would look something like:

lw5|lp5| :tc=sapple5:

sapple5|sapple|Apple laser writer NT on Orion:\
:co#80:li#66:os:pt:ta^I:\
:DD=lpnode!apple,/tmp/asfXXXXXX,!{ lpr -Plw5 $F; rm $F; }:

To then create an entry for a new device named ’lw16’ simply copy this entry and change the
’5’ to ’16’ in the device and termcap entry names, and especially in the lpr command of the DD
string. The $F denotes the name of the file to be printed, specifically the temp file created so it
should be removed to avoid filling up the disk. Note that the DD string can contain any valid
unix command to print a file to a specific device, we use various local print commands,
Enscript, etc.

If you have a local terminal which has no entry in the IRAF termcap file, you probably
already have an entry in the UNIX termcap file. Simply copy it into the IRAF file; both sys-
tems use the same termcap database format and terminal device capabilities. However, if the
terminal in question is a graphics terminal with a device entry in the graphcap file, you should
add a ‘:gd’ capability to the termcap entry. If the graphcap entry has a different name from the
termcap entry, make it ‘:gd=gname’.

2.2.7. The GRAPHCAP file
There must be an entry in the graphcap file for all graphics terminals, batch plotters, and

image displays accessed by IRAF programs. We will discuss each briefly since the setup is
slightly different in each case. Help preparing new graphcap device entries is available from
iraf site support if needed, but with the exception of new graphics terminals creating an entry
for a new device is usually just a matter of editing an existing entry. We ask that new graphcap
entries be sent back to us so that we may include them in the master graphcap file for all to

- 8 -

benefit.

2.2.7.1. Graphics hardcopy devices
Graphics hardcopy devices nowadays are typically Postscript printers, but support is

included in the system for various pen and raster plotters, and non-PostScript printers such as
HP LaserJet, Imagen, QMS, etc. We will concentrate here on PostScript devices since they are
the most common. The typical graphcap entry will look something like

lp5|lw5| :tc=uapl5:

uapl5|UNIX generic interface to 300dpi printer on Orion:\
:xs#0.269:ys#0.210:ar#0.781:\
:DD=apl,tmp$sgk,!{ sgidispatch sgi2uapl $F -l$(XO) -w$(XW) \
-b$(YO) -h$(YW) -p$(PW) | lpr -Plw5; rm $F; }&:tc=sgi_apl:

where the device is known to the system as lw5 or lp5. The entry is very similar in form to the
termcap entry discussed above, and changing it for a new device is primarily a matter of
changing the device names. The exception however is in the DD string: here instead of a sim-
ple print command we invoke an SGI translator via the sgidispatch command (in this case the
sgi2uapl translator) which is used to the convert the graphics kernel metacode to PostScript for
the final printing. The arguments to the sgi2uapl translator are the device resolution and offset
parameters obtained from the sgi_apl entry linked by the :tc field at the end of the graphcap
entry. The output from the translator is piped to a printer and the temp file is removed.

If we wish to convert this entry for a different type of printer, aside from the changing the
name in the graphcap entries and the print command, the DD string may have to be changed to
call a new SGI translator with the appropriate arguments, and the final :tc field would have to
link to a new entry appropriate for that device. In V2.12 the following SGI translators are avail-
able:

sgi2gif - GIF image converter
sgi2uapl.c - PostScript for LaserWriters and PS plotters
sgi2ueps.c - Encapsulated PostScript, PS-Adobe-3.0, EPSF-3.0
sgi2uhpgl.c - HP Graphics Language for HP 7550A and others
sgi2uhplj.c - HP Printer Command Language (LaserJet Series)
sgi2uimp.c - Impress language for Imagen printers
sgi2uptx.c - Printronix plotter
sgi2uqms.c - QMS Vector Graphics (Talaris Lasergrafix)
sgi2xbm - B-bitmap image converter

In addition, Versatec plotters are supported (no SGI translator needed).

2.2.7.2. Image display frame buffers
Graphcap entries are required to configure the available stdimage devices for the sys-

tem. These are basically just frame buffer configurations describing the size of the image
display being used (whether it’s an actual frame buffer such as an IIS mode 70 or a display
server such as XImtool or SAOimage). A typical entry for a 512x512 frame buffer looks like:

imt1|imt512|imtool|Imtool display server:\
:cn#1:LC:BS@:z0#1:zr#200:DD=node!imtool,,512,512:tc=iism70:

Here the :cn field is the configuration number and the frame buffer size is given in the DD
field. For display servers such as XImtool the configuration number is passed to the server
which then uses that as an index to the imtoolrc file (normally installed by the system as a link
to dev$imtoolrc) it uses to determine the frame buffer size to be used. When adding a new
frame buffer you need to be sure the :cn field is unique and the size in the graphcap file agrees
with the size in the imtoolrc file for that config, both files must be edited for the new size to be
recognized correctly. Note that SAOimage has a limit of 64 possible frame buffers that will be
recognized, XImtool, DS9 and SAOtng recognize up to 128 possible configurations.

- 9 -

2.2.7.3. Graphics Terminals
New graphics terminals will need a new entry in the graphcap file if one does not already

exist. The IRAF file gio$doc/gio.hlp contains documentation describing how to prepare graph-
cap device entries. A printed copy of this document is available from the iraf/docs directory in
the IRAF network archive. However, once IRAF is up you may find it easier to generate your
own copy using help, as follows:

cl> help gio$doc/gio.hlp fi+ | lprint

This will print the document on the default IRAF printer device which will be the default printer
for your machine or the one named by your UNIX PRINTER environment variable (use the
"device=" hidden parameter to specify a different device). Alternatively, to view the file on the
terminal,

cl> phelp gio$doc/gio.hlp fi+

The help pages for the IRAF tasks showcap and stty should also be reviewed as these utili-
ties are useful for generating new graphcap entries. The i/o logging feature of stty is useful for
determining exactly what characters your graphcap device entry is generating. The gdevices
task is useful for printing summary information about the available graphics devices.

2.2.8. Configuring IRAF networking
The dev directory contains the files (hosts and irafhosts that areused by the IRAF

network interface. IRAF networking is used to access remote image displays, printers, magtape
devices, files, images, etc. via the network. Nodes do not necessarily have to have the same
architecture, or even run the same operating system, so long as they can run IRAF.

To enable IRAF networking for a UNIX/IRAF system, all that is necessary is to edit the
"hosts" file. Beginning with V2.12 a post-install configuration option allows the appropriate
entry for the machine to be automatically entered in the hosts file, and it is recomended that all
machines which run IRAF have the install script run on the machine to ensure proper operation.
In cases where it’s necessary to manually create a new node entry, the site manager can make an
entry for each logical node, in the format

nodename [aliases] ":" irafks.e-pathname

following the examples given in the hosts file supplied with the distribution (which is the
NOAO/Tucson hosts file). Note that there may be multiple logical entries for a single physical
node, however duplicate

The "irafhosts" file is the template file used to create user .irafhosts files. It does not have
to be modified, although you can do so if you wish to change the default parameter values given
in the file.

To enable IRAF networking on a particular IRAF host, the host OS hostname (i.e. the
output of the unix hostname command) must appear as a primary name or alias somewhere in
the IRAF hosts table. On systems where this is the fully qualified host name (FQHN) the node
name may exceed a limit 16-character limit on a node name so at least one alias should include
a truncated version of the FQHN, the entire FQHN should appear on the right side of the ’:’ in
the irafks.e pathname. During process startup, the IRAF VOS looks for the system name for the
current host and automatically disables networking if this name is not found. Hence IRAF net-
working is automatically disabled when the distributed system is first installed - unless you are
unlucky enough to have installed the system on a host with the same name as one of the nodes
in the NOAO host table. Note that it may be best to simply delete the NOAO host table entries
since any duplicate with a local host entry will will cause the IRAF "cd" command to fail and
may have other consequences.

Once IRAF networking is configured, the following command may be typed in the CL to
verify that all is well:

- 10 -

cl> netstatus

This will print the host table and state the name of the local host. Read the output carefully to
see if any problems are reported.

Alternatively, users can set up a private hosts table by copying the system version and
making any additions. To then make use of this define a CL environment variable irafhnt
which is the path to the private hosts file. For example,

cl> copy dev$hosts home$myhosts # make private copy
cl> edit home$myhosts # edit any changes
cl> reset irafhnt = home$myhosts # reset hosts table to be used
cl> flpr 0 # reinitialize system to use it

You can also define a UNIX irafhnt variable in the same way prior to logging into the CL to
accomplish the same thing.

For IRAF networking to be of any use, it is necessary that IRAF be installed on at least
two systems. In that case either system can serve as the server for an IRAF client (IRAF pro-
gram) running on the other node. It is not necessary to have a separate copy of IRAF on each
node, i.e., a single copy of IRAF may be NFS mounted on all nodes (you will need to run the
IRAF install script on each client node). If it is not possible to install IRAF on a node for some
reason (either directly or using NFS) it is possible to manage by installing only enough of IRAF
to run the IRAF kernel server. Contact IRAF site support if you need to configure things in this
manner.

UNIX IRAF systems currently support only TCP/IP based networking. Networking
between any heterogeneous collection of systems is possible provided they support TCP/IP
based networking (virtually all UNIX-based systems do). The situation with networking
between UNIX and VMS systems is more complex.

Once IRAF networking is enabled, objects resident on the server node may be accessed
from within IRAF merely by specifying the node name in the object name, with a "node!"
prefix. For example, if foo is a network node,

cl> page foo!hlib$motd
cl> allocate foo!mta
cl> devstatus foo!mta

In a network of "trusted hosts" the network connection will be made automatically,
without a password prompt using the rsh protocol. A password prompt will be generated if the
user does not have permission to access the remote node with UNIX commands such as rsh
since the system will fall back to an ’rexec’ protocol. The environment variable KSRSHFR
may be defined to use an alternate connection protocol, e.g. ssh or remsh. It is beyond the
scope of this document to discuss the configuration of ssh for local networks, for now we will
assume that rsh is a supported networking protocol. Hosts are made "trusted" in a network by
listing them in the system /etc/hosts.equiv file, most often when rsh fails it’s because
this file hasn’t been configured (usually for security reasons). User’s can configure a .rhosts
file in their UNIX login directories (see the rhosts(5) man page) to make the hosts trusted for
their account and bypass the passwd prompt. Each user also has a .irafhosts file in their UNIX
login directory which can be used to exercise more control over how the system connect to
remote hosts. See the discussion of IRAF networking in the IRAF Version 2.10 Revisions Sum-
mary (in iraf$doc/v210revs.ms), or in the V2.10 system notes file, for a more in-depth discus-
sion of how IRAF networking works.

To keep track of where files are in a distributed file system, IRAF uses network path-
names. A network pathname is a name such as "foo!/tmp3/images/m51.pix", i.e., a host or
IRAF filename with the node name prepended. The network pathname allows an IRAF process
running on any node to access an object regardless of where it is located on the network.

Inefficiencies can result when image pixel files are stored on disks which are cross-
mounted using NFS. The typical problem arises when imdir (the pixel file storage directory) is

- 11 -

set to a path such as "/data/iraf/user/", where /data is a NFS mounted directory. Since NFS is
transparent to applications like IRAF, IRAF thinks that /data is a local disk and the network
pathname for a pixel file will be something like "foo!/data/iraf" where "foo" is the hostname of
the machine on which the file is written. If the image is then accessed from a different network
node the image data will be accessed via an IRAF networking connection to node "foo", fol-
lowed by an NFS connection to the node on which the disk is physically mounted, causing the
data to traverse the network twice, slowing access and unnecessarily loading the network.

A simple way to avoid this sort of problem is to include the server name in the imdir, e.g.,

cl> set imdir = "server!/data/iraf/user/"

This also has the advantage of avoiding NFS for pixel file access - NFS is fine for small files
but can load the server excessively when used to access bulk image data.

Alternatively, one can set imdir to a value such as "HDR$pixels/", or disable IRAF net-
working for disk file access. In both cases NFS will be used for image file access.

2.2.9. Configuring the IRAF account
The IRAF account, i.e., what one gets when one logs into UNIX as "iraf", is the account

used by the IRAF site manager to work on the IRAF system. Anyone who uses this account is
in effect a site manager, since they have permission to modify, delete, or rebuild any part of
IRAF. For these and other reasons (e.g., concurrency problems) it is recommended that all rou-
tine use of IRAF be performed from other accounts (user accounts).

If the system has been installed according to the instructions given in the installation guide
the login directory for the IRAF account will be iraf/local. This directory contains both a
.login file defining the environment for the IRAF account, and a number of other "dot" files
used to setup the IRAF system manager’s working environment.

Most site managers will probably want to customize these files according to their personal
preferences. In doing this please use caution to avoid losing environment definitions, etc.,
which are essential to the correct operation of IRAF, including IRAF software development and
maintainence.

The default login.cl file supplied in the IRAF login directory uses machine independent
pathnames and should work as-is (no need to do a mkiraf - in fact mkiraf has safeguards against
inadvertent use within the IRAF directories and may not work in iraf/local). It may be neces-
sary to edit the .login file to modify the way the environment variable IRAFARCH is defined.
This variable, required for software development but optional for merely using IRAF, must be
set to the name of the desired machine architecture, e.g., sparc, vax, rs6000, ddec, etc. If it is
set to the name of an architecture for which there are no binaries, e.g., generic, the CL may not
run, so be careful. The alias setarch, defined in the iraf account .login, is convenient for setting
the desired architecture for IRAF execution and software development.

2.2.10. Configuring user accounts for IRAF
User accounts should be loosely modeled after the IRAF account. All that is required for

a user to run IRAF is that they run mkiraf in their desired IRAF login directory before starting
up the CL. Defining iraf or IRAFARCH in the user environment is not required unless the
user will be doing any IRAF based software development (including IMFORT). Programmers
doing IRAF software development may wish to source hlib$irafuser.csh in their .login file as
well.

2.3. Tuning Considerations

- 12 -

2.3.1. Stripping the system to reduce disk usage
If the system is to be installed on multiple CPUs, or if a production version is to be

installed on a workstation, it may be necessary or desirable to strip the system of all non-
runtime files to save disk space. This equates to deleting all the sources and all the reference
manuals and other documentation, excluding the online manual pages. A special utility called
rmfiles (in the SOFTOOLS package) is provided for this purpose. It is not necessary to run
rmfiles directly to strip the system. The preferred technique is to use "mkpkg strip" as in the
following example (this may be executed from either the host system or from within IRAF).

% cd $iraf
% mkpkg strip

This will preserve all runtime files, permitting use of the standard system as well as user
software development. Note that only the IRAF core system is stripped, i.e., if you want to
strip any external layered software products, such as the NOAO package, a mkpkg strip must be
executed separately for each - cd to the root directory of the external package first and be sure to
include the "-p pkg" switch to mkpkg so the proper environment is loaded. For example, to strip
the NOAO package:

% cd $iraf/noao
% mkpkg -p noao strip

A tape backup of a system should always be made before the system is stripped; keep the
backup indefinitely as it may be necessary to restore the sources in order to, e.g., install a bug
fix or add-on software product.

3. Software Management

3.1. Multiple architecture support
Often the computing facilities at a site consist of a heterogeneous network of workstations

and servers. These machines will often have quite different architectures or operating systems.
Since IRAF is a large system it is undesirable to have to maintain a separate copy of IRAF for
each machine architecture on a network. For this reason IRAF provides support for multiple
architectures within a single copy of IRAF. To be accessible by multiple network clients, this
central IRAF system will typically be NFS mounted on each client. It should be noted however
that it is not always possible to use the multiple architecture support within the core system
itself to maintain a single IRAF source tree for the entire heterogeneous network. The Host
System Interface (HSI) for IRAF ports is different for platforms as diverse as Sun and Linux so
there should be a separate installation for each system to minimize difficulties (the update
schedules usually differ as well so maintaining the same version is also more difficult). Almost
any combination of architectures may be supported by a single copy of an external package.

Multiple architecture support is implemented by separating the IRAF sources and binaries
into different directory trees. The sources are architecture independent and hence sharable by
machines of any architecture. All of the architecture dependence is concentrated into the
binaries, which are collected together into the so-called BIN directories, one for each architec-
ture. The BIN directory contains all the object files, object libraries, executables, and shared
library images for an architecture, supporting both IRAF execution and software development
for that architecture. A given system can support any number of BIN directories, and therefore
any number of architectures.

In IRAF terminology, when we refer to an "architecture" what we really mean is a type of
BIN. The correspondence between BINs and hardware architectures is not necessarily one-to-
one, i.e., multiple BINs can exist for a single compiler architecture by compiling the system
with different compilation flags, as different versions of the software, and so on. Examples of
some currently supported IRAF V2.12 software architectures are shown below.

- 13 -

Architecture System Description

generic any no binaries
alpha Dec Alpha DEC Alpha running Digital Unix
freebsd PC PC platforms running FreeBSD
hp700 HP HP 700 series running HPUX 10
irix SGI SGI IRIX, MIPS cpu
linux PC PC platforms running Linux (Slackware, Debian, etc)
linuxppc PC PowerPC platforms running Linux
sparc Sun-4 Sun SPARC (RISC) architecture, integral fpu
sunos PC PC platforms running Solaris x86
suse PC PC platforms running SuSE Linux
ssun Sun-4 Sun SPARC under Solaris (RISC) architecture, integral fpu
redhat PC PC platforms running RedHat (or Mandrake) Linux
macosx PC Macintosh OS X systems

Most of these correspond to hardware architectures or operating system distribution
options. The exceptions is the generic architecture, which is what the distributed system is
configured to by default (to avoid having any architecture dependent binary files mingled with
the sources).

When running IRAF on a system configured for multiple architectures, selection of the
BIN (architecture) to be used is controlled by the UNIX environment variable IRAFARCH, e.g.,

% setenv IRAFARCH alpha

would cause IRAF to run using the alpha architecture, corresponding to the BIN directory
bin.alpha. Once inside the CL one can check the current architecture by entering one of the fol-
lowing commands (the output in each case is shown as well).

cl> show IRAFARCH
alpha

or

cl> show arch
.alpha

If IRAFARCH is undefined at CL startup time a default architecture will be selected based on
the current machine architecture, the available floating point hardware, and the available BINs.
The IRAFARCH variable controls not only the architecture of the executables used to run
IRAF, but the libraries used to link IRAF programs, when doing software development from
within the IRAF or host environment.

3.2. Shared libraries
Among the UNIX based versions of IRAF, currently only Sun/IRAF (for SunOS and

Solaris) and OSF1/IRAF for the DEC Alpha supports shared libraries, although we are looking
into adding shared library support to the other, mostly SysV based versions of IRAF. SunOS
has an unusually powerful virtual file system architecture, and several years ago was one of the
few UNIX systems supporting shared, mapped access to files. This is no longer the case how-
ever, and nowadays most versions of UNIX provide some sort of shared library facility. Shared
libraries result in a considerable savings in disk space, so eventually we will probably imple-
ment the facility for additional platforms. In the meanwhile, if you are running IRAF on a sys-
tem other than a Sun or DEC Alpha this section can be skipped.

Sun/IRAF provides a shared library facility for SunOS 4.1 and Solaris 2.5.1 and later
operating system versions. of SunOS. All architectures are supported. So long as everything is

- 14 -

working properly, the existence and use of the shared library should be transparent to the user
and to the site manager. This section gives an overview of the shared library facility to point
the reader in the right direction in case questions should arise.

What the shared library facility does is take most of the IRAF system software (currently
the contents of the ex, sys, vops, and os libraries) and link it together into a special shar-
able image, the file Sn.e in each core system BIN directory (n is the shared image version
number, e.g. "S8.e"). This file is mapped into the virtual memory of each IRAF process at pro-
cess startup time. Since the shared image is shared by all IRAF processes, each process uses
less physical memory, and the process pagein time is reduced, speeding process execution.
Likewise, since the subroutines forming the shared image are no longer linked into each indivi-
dual process executable, substantial disk space is saved for the BIN directories. Link time is
correspondingly reduced, speeding software development.

The shared library facility consists of the shared image itself, which is an actual execut-
able image (though not runnable on all systems), and the shared library, contained in the
library lib$libshare.a, which defines each VOS symbol (subroutine), and which is what is linked
into each IRAF program. The shared library object module does not consume any space in the
applications program, rather it consists entirely of symbols pointing to transfer vector slots in
the header area of the shared image. The transfer vector slots point to the actual subroutines.

When an IRAF program is linked with xc, one has the option of linking with either the
shared library or the individual system libraries. Linking with the shared library is the default;
the -z flag disables linking with the shared library. In the final stages of linking xc runs the
HSI utility edsym to edit the symbol table of the output executable, modifying the shared library
(VOS) symbols to point directly into the shared image (to facilitate symbolic debugging),
optionally deleting all shared library symbols, or performing some other operation upon the
shared library symbols, depending upon the xc link flags given.

At process startup time, upon entry to the process main (a C main for Sun/IRAF) the
shared image will not yet have been mapped into the address space of the process, hence any
attempted references to VOS symbols would result in a segmentation violation. The zzstrt pro-
cedure, called by the process main during process startup, opens the shared image file and maps
it into the virtual space of the IRAF program. Once the IRAF main prompt appears (when run-
ning an IRAF process standalone), all initialization will have completed.

Each BIN, if linked with the shared library, will have its own shared image file Sn.e. If
the shared image is relinked this file will be moved to Sn.e.1 and the new shared image will
take its place; any old shared image files should eventually be deleted to save disk space, once
any IRAF processes using them have terminated. Normally when the shared image is rebuilt it
is not necessary to relink applications programs, since the transfer vector causes the linked
application to be unaffected by relocation of the shared image functions.

If the shared image is rebuilt and its version number (the n in Sn.e) is incremented, the
transfer vector is rebuilt the new shared image cannot be used with previously linked applica-
tions. These old applications will still continue to run, however, so long as the older shared
image is still available. It is common practice to have at least two shared image versions
installed in a BIN directory.

Further information on the Sun/IRAF shared library facility in given in the IRAF V2.8
system notes file. In particular, anyone doing extensive IRAF based software development
should review this material, e.g., to learn how to debug processes that are linked with the shared
image.

- 15 -

3.3. Layered software support
An IRAF installation consists of the core IRAF system and any number of external pack-

ages, or "layered software products". As the name suggests, layered software products are lay-
ered upon the core IRAF system. Layered software requires the facilities of the core system to
run, and is portable to any computer which already runs IRAF. Any number of layered pro-
ducts can be installed in IRAF to produce the IRAF system seen by the user at a given site.

The support provided by IRAF for layered software is essentially the same as that pro-
vided for maintaining the core IRAF system itself (the core system is a special case of a layered
package). Each layered package (usually this refers to a suite of subpackages) is a system in
itself, similar in structure to the core IRAF system. Hence, there is a LIB, one or more BINs, a
help database, and all the sources and runtime files. A good example of an external package is
the NOAO package. Except for the fact that NOAO is rooted in the IRAF directories, NOAO is
equivalent to any other layered product, e.g., STSDAS, TABLES, XRAY, CTIO, NSO, ICE,
GRASP, NLOCAL, STEWARD, and so on. In general, layered products should be rooted
somewhere outside the IRAF directory tree to simplify updates.

3.4. Software management tools
IRAF software management is performed with a standard set of tools, consisting of the

tasks in the SOFTOOLS package, plus the host system editors and debuggers. Some of the
most important and often used tools for IRAF software development and software maintenance
are the following.

mkhelpdb Updates the HELP database of the core IRAF system or an exter-
nal package. The core system, and each external package, has its
own help database. The help database is the machine independent
file helpdb.mip in the package library (LIB directory). The
help database file is generated with mkhelpdb by compiling the
root.hd file in the same directory.

mkpkg The "make-package" utility. Used to make or update package
trees. Will update the contents of the current directory tree.
When run at the root iraf directory, updates the full IRAF system;
when run at the root directory of an external package, updates the
external package. Note that updating the core IRAF system does
not update any external packages (including NOAO). When
updating an external package, the package name must be
specified, e.g., "mkpkg -p noao".

rmbin Descends a directory tree or trees, finding and optionally listing or
deleting all binary files therein. This is used, for example, to strip
the binaries from a directory tree to leave only sources, to force
mkpkg to do a full recompile of a package, or to locate all the
binaries files for some reason. IRAF has its own notion of what a
binary file is. By default, files with the "known" file extensions
(.[aoe], .[xfh] etc.) are classified as binary or text (machine
independent) files immediately, while a heuristic involving exami-
nation of the file data is used to classify other files. Alternatively,
a list of file extensions to be searched for may optionally be
given.

rtar,wtar These are the portable IRAF tarfile writer (wtar) and reader (rtar).
About the only reasons to use these with the UNIX versions of
IRAF are if one wants to move only the machine independent or
source files (wtar, like rmbin, can discriminate between machine

- 16 -

generated and machine independent files), or if one is importing
files written to a tarfile on a VMS/IRAF system, where the files
are blank padded and the trailing blanks need to be stripped with
rtar.

xc The X (SPP) compiler. This is analogous to the UNIX cc except
that it can compile ".x" or SPP source files, knows how to link
with the IRAF system libraries and the shared library, knows how
to read the environment of external packages, and so on.

The SOFTOOLS package contains other tasks of interest, e.g., a program mktags for mak-
ing a tags file for the vi editor, a help database examine tool, and other tasks. Further informa-
tion on these tasks is available in the online help pages.

3.5. Modifying and updating a package
IRAF applications development is most conveniently performed from within the IRAF

environment, since testing must be done from within the environment. The usual edit-
compile-test development cycle is illustrated below. This takes place within the package direc-
tory containing all the files specific to a given package.

� Edit one or more source files.
� Use mkpkg to compile any modified files, or files which include a modified file, and

relink the package executable.
� Test the new executable.

The mkpkg file for a package can be written to do anything, but by convention the follow-
ing commands are usually provided.

mkpkg The mkpkg command with no arguments does the default mkpkg
operation; for a subpackage this is usually the same as mkpkg
relink below. For the root mkpkg in a layered package it udpates
the entire layered package.

mkpkg libpkg.a Updates the package library, compiling any files which have been
modified or which reference include files which have been
modified. Private package libraries are intentionally given the
generic name libpkg.a to symbolize that they are private to the
package.

mkpkg relink Rebuilds the package executable, i.e., updates the package library
and relinks the package executable. By convention, this is the file
xx_pkgname.e in the package directory, where pkgname is the
package name.

mkpkg install Installs the package executable, i.e., renames the xx_foo.e file to
x_foo.e in the global BIN directory for the layered package to
which the subpackage foo belongs.

mkpkg update Does everything, i.e., a relink followed by an install.

If one wishes to test the new program before installing it one should do a relink (i.e.,
merely type "mkpkg" since that defaults to relink), then run the host system debugger on the
resultant executable. The process is debugged standalone, running the task by giving its name
to the standalone process interpreter. The CL task dparam is useful for dumping a task’s
parameters to a text file to avoid having to answer parameter queries during process execution.
The LOGIPC debugging facility introduced in V2.10 is also useful for debugging subprocesses.
If the new program is to be tested under the CL before installation, a task statement can be

- 17 -

interactively typed into the CL to cause the CL to run the "xx_" version of the package execut-
able, rather than old installed version.

When updating a package other than in the core IRAF system, the -p flag, or the
equivalent PKGENV environment variable, must be used to indicate the system or layered pro-
duct being updated. For example, "mkpkg -p noao update" would be used to update one of the
subpackages of the NOAO layered package. If the package being updated references any
libraries or include files in other layered packages, those packages must be indicated with a "-p
pkgname" flag as well, to cause the external package to be searched.

The CL process cache can complicate debugging and testing if one forgets that it is there.
When a task is run under the CL, the executing process remains idle in the CL process cache
following task termination. If a new executable is installed while the old one is still in the pro-
cess cache, the CL will automatically run the new executable (the CL checks the modify date on
the executable file every time a task is run). If however an executable is currently running,
either in the process cache or because some other user is using the program, it may not be possi-
ble to set debugger breakpoints.

The IRAF shared image can also complicate debugging, although for most applications-
level debugging the shared library is transparent. By default the shared image symbols are
included in the symbol table of an output executable following a link, so in a debug session the
shared image will appear to be part of the applications program. When debugging a program
linked with the shared library, the process must be run with the -w flag to cause the shared
image to be mapped with write permission, allowing breakpoints to be set in the shared image
(that is, you type something like ":r -w" when running the process under the debugger). Link-
ing with the -z flag will prevent use of the shared image entirely.

A full description of these techniques is beyond the scope of this manual, but one need not
be an expert at IRAF software development techniques to perform simple updates. Most simple
revisions, e.g., bug fixes or updates, can be made by merely editing or replacing the affected
files and typing

cl> mkpkg

or

cl> mkpkg update

to update the package.

3.6. Installing and maintaining layered software
The procedures for installing layered software products are similar to those used to install

the core IRAF system, or update a package. Layered software may be distributed in source only
form, or with binaries; it may be configured for a single architecture, or may be preconfigured to
support multiple architectures. The exact procedures to be followed to install a layered product
will in general be product dependent, and should be documented in the installation guide for the
product.

In brief, the procedure to be followed should resemble the following:
� Create the root directory for the new software, somewhere outside the IRAF direc-

tories.
� Restore the files to disk from a tape or network archive distribution file.
� Edit the core system file hlib$extern.pkg to "install" the new package in IRAF. This

file is the sole link between the IRAF core system and the external package.
� Configure the package BIN directory or directories, either by restoring the BIN to

disk from an archive file, or by recompiling and relinking the package with mkpkg.

- 18 -

As always, there are some little things to watch out for. When using mkpkg on a layered pro-
duct, you must give the name of the system being operated upon, e.g.,

cl> mkpkg -p foo update

where foo is the system or package name, e.g., "noao", "local", etc. The -p flag can be omit-
ted by defining PKGENV in your UNIX environment, but this only works for updates to a sin-
gle package.

An external system of packages may be configured for multiple architecture support by
repeating what was done for the core system. One sets up several BIN directories, one for each
architecture, named bin.arch, where arch is "sparc", "ddec", "rs6000", etc. These directories,
or symbolic links to the actual directories, go into the root directory of the external system. A
symbolic link bin pointing to an empty directory bin.generic, and the directory itself, are
added to the system’s root directory. The system is then stripped of its binaries with rmbin, if it
is not already a source only system. Examine the file zzsetenv.def in the layered package LIB
directory to verify that the definition for the system BIN (which may be called anything)
includes the string "(arch)", e.g.,

set noaobin = "noao$bin(arch)/"

The binaries for each architecture may then be generated by configuring the system for the
desired architecture and running mkpkg to update the binaries, for example,

cl> cd foo
cl> mkpkg sparc
cl> mkpkg -p foo update >& spool &

where foo is the name of the system being updated. If any questions arise, examination of a
working example of a system configured for multiple architecture support (e.g., the NOAO
packages) may reveal the answers.

Once installed and configured, a layered product may be uninstalled merely by archiving
the package directory tree, deleting the files, and commenting out the affected lines of
hlib$extern.pkg. With the BINs already configured reinstallation is a simple matter of restoring
the files to disk and editing the extern.pkg file.

3.7. Configuring a custom LOCAL package
Anyone who uses IRAF enough will eventually want to add their own software to the sys-

tem, by copying and modifying the distributed versions of programs, by obtaining and installing
isolated programs written elsewhere, or by writing new programs of their own. A single user
can do this by developing software for their own personal use, defining the necessary task state-
ments etc. to run the software in their personal login.cl or loginuser.cl file. To go one step
further and install the new software in IRAF so that it can be used by everyone at a site, one
must configure a custom local package.

The procedures for configuring and maintaining a custom LOCAL package are similar to
those outlined in §3.5 for installing and maintaining layered software, since a custom LOCAL
will in fact be a layered software product, possibly even something one might want to export to
another site (although custom LOCALs may contain non-portable or site specific software).

To make a custom local you make a copy of the "template local" package (iraf$local)
somewhere outside the IRAF directory tree, change the name to whatever you wish to call the
new layered package, and install it as outlined in §3.5. The purpose of the template local is to
provide the framework necessary for a external package; a couple of simple tasks are provided
in the template local to serve as examples. Once you have configured a local copy of the tem-
plate local and gotten it to compile and link, it should be a simple matter to add new tasks to
the existing framework.

- 19 -

3.8. Updating the full IRAF system
This section will describe how to recompile or relink IRAF. Before we get into this how-

ever, it should be emphasized that most users will never need to recompile or relink IRAF. In
fact, this is not something that one should attempt lightly - don’t do it unless you have some
special circumstance which requires a custom build of the system (such as a port). Even then
you might want to set up a second copy of IRAF to be used for the experiment, keeping the
production system around as the standard system. If you change the system it is a good idea to
make sure that you can undo the change.

While the procedure for building IRAF is straightforward, it is easy to make a mistake and
without considerable knowledge of IRAF it may be difficult to recover from such a a mistake
(for example, running out of disk space during a build, or an architecture mismatch resulting in
a corrupted library or shared image build failure). More seriously, the software - the host
operating system, the host Fortran compiler, the local system configuration, and IRAF - is
changing constantly. A build of IRAF brings all these things together at one time, and every
build needs to be independently and carefully tested. An OS upgrade or a new version of the
Fortran compiler may not yet be supported by the version of IRAF you have locally. Any prob-
lems with the host system configuration can cause a build to fail, or introduce bugs. For exam-
ple, systems which support multiple Fortran compilers or which require the user to install and
configure the compiler are a common source of problems.

The precompiled binaries we ship with IRAF have been carefully prepared and tested, usu-
ally over a period of months prior to a major release. They are the same as are used at NOAO
and at most IRAF sites, so even if there are bugs they will likely have already been seen else-
where and a workaround determined. If the bugs are new then since we have the exact same
IRAF system we are more likely to be able to reproduce and fix the bug. Often the bug is not
in the IRAF software at all but in the host system or IRAF configuration. As soon as an execut-
able is rebuilt (even something as simple as a relink) you have new, untested, software.

3.8.1. The BOOTSTRAP
To fully build IRAF from the sources is a four-step process. First the system is

"bootstrapped", which builds the host system interface (HSI) executables. A "sysgen" of the
core system is then performed; this compiles all the system libraries and builds the core system
applications. The bootstrap is then repeated, to make use of some of the functions from the
IRAF libraries compiled in step two, and the "sysgen" of the core system is the repeated to
compile parts of the system requiring the second bootstrap code.

To bootstrap IRAF, login as IRAF and enter the commands shown below. This takes a
while and generates a lot of output, so the output should be spooled in a file. Here, arch refers
to the IRAF architecture you wish to build for.

% cd $iraf
% mkpkg arch
% cd $iraf/unix
% reboot >& spool &

There are two types of bootstrap; the initial bootstrap starting from a source only system,
called the NOVOS bootstrap, and the final or VOS bootstrap, performed once the IRAF system
libraries libsys.a and libvops.a exist. The bootstrap script reboot will automatically
determine whether or not the VOS libraries are available and will perform a NOVOS bootstrap
if the libraries cannot be found. It is important to restore the desired architecture before
attempting a bootstrap, as otherwise a NOVOS bootstrap will always be performed.

- 20 -

3.8.2. The SYSGEN
By sysgen we refer to an update of the core IRAF system - all of the files comprising the

runtime system, excluding the HSI which is generated by the bootstrap. On a source only sys-
tem, the sysgen will fully recompile the core system, build all libraries and applications, and
link and install the shared image and executables. On an already built system, the sysgen scans
the full IRAF directory tree to see if anything is out of date, recompiles any files that need it,
then relinks and installs new executables.

To do a full sysgen of IRAF one merely runs mkpkg at the IRAF root. If the system is
configured for multiple architecture support one must repeat the sysgen for each architecture.
Each sysgen builds or updates a single BIN directory. Since a full sysgen takes a long time and
generates a lot of output which later has to be reviewed, it is best to run the job in batch mode
with the output redirected. For example to update the Solaris binaries on a Sun workstation:

% cd $iraf
% mkpkg ssun
% mkpkg >& spool &

To watch what is going on after this command has been submitted and while it is running, try

% tail -f spool

Sysgens are restartable, so if the sysgen aborts for any reason, simply fix the problem and start
it up again. Modules that have already been compiled should not need to be recompiled. How
long the sysgen takes depends upon how much work it has to do. The worst case is if the sys-
tem and applications libraries have to be fully recompiled. If the system libraries already exist
they will merely be updated. Once the system libraries are up to date the sysgen will rebuild
the shared library if any of the system libraries involved were modified, then the core system
executables will be relinked.

A full sysgen generates a lot of output, too much to be safely reviewed for errors by sim-
ply paging the spool file. Enter the following command to review the output (this assumes that
the output has been saved in a file named "spool").

% mkpkg summary

It is normal for a number of compiler messages warning about assigning character data to an
integer variable to appear in the spooled output if the full system has been compiled. There
should be no serious error messages if a supported and tested system is being recompiled.

The above procedure only updates the core IRAF system. To update a layered product
one must repeat the sysgen process for the layered system. For example, to update the
Sun/Solaris binaries for the NOAO package (which also requires the TABLES packages):

% cd $iraf/noao
% mkpkg -p noao ssun
% mkpkg -p noao -p tables >& spool &

This must be repeated for each supported architecture. Layered systems are independent of one
another and hence must be updated separately.

To force a full recompile of the core system or a layered package, one can use rmbin to
delete the objects, libraries, etc. scattered throughout the system, or do a "mkpkg generic" and
then delete the OBJS.arc.Z file in the BIN one wishes to regenerate (the latter approach is
probably safest). A full IRAF core system sysgen currently takes anywhere from 30 minutes to
6+ hours, depending upon the system.

3.8.3. Localized software changes
The bootstrap and the sysgen are unusual in that they update the entire HSI, core IRAF

system, or layered package. Many software changes are more localized. If only a few files are
changed a sysgen will pick up the changes and update whatever needs to be updated, but for
localized changes a sysgen really does more than it needs to (if the changes are scattered all

- 21 -

over the system an incremental sysgen-relink will still be best).

To make a localized change to a core system VOS library and update the linked applica-
tions to reflect the change all one really needs to do is change the desired source files, run
mkpkg in the library source directory to compile the modules and update the affected libraries,
and then build a new IRAF shared image (this assumes that the changes affect only the libraries
used to make the shared image, i.e., libsys, libex, libvops, and libos). Updating only the shared
image, without relinking all the applications, has the advantage that you can put the runtime
system back the way it was by just swapping the old shared image back in - a single file.

For example, assume we want to make a minor change to some files in the VOS interface
IMIO, compiling for the ssun architecture on Sun, which uses a shared library. We could do
this as follows (this assumes that one is logged in as IRAF and that the usual IRAF environ-
ment is defined).

% whoami
iraf
% cd $iraf
% mkpkg ssun
% cd imio

(edit the files)
% mkpkg # update IMIO libraries (libex)
%
% cd $iraf/bin.ssun # save copy of old shared image
% cp S12.e S12.e.V212
%
% cd $iraf/unix/shlib
% tar -cf ~/shlib.tar . # backup shlib just in case
% mkpkg update # make and install new shared image

If IRAF is not configured with shared libraries, one must relink the full IRAF system and
all layered packages for the change to take effect. This is done by running mkpkg at the root of
the core system and each layered package. For example, on a RedHat Linux system

% whoami
iraf
% cd $iraf
% mkpkg redhat
% cd imio

(edit the files)
% cd iraf
% mkpkg # update the core system
%
% cd noao
% mkpkg -p noao redhat
% mkpkg -p noao -p tables # update the NOAO packages

and so on, for each layered package.

Changing applications is even easier. Ensure that the system architecture is set correctly
(i.e. "mkpkg arch" at the iraf or layered package root), edit the affected files in the package
source directory, and type "mkpkg -p <pkgname> update" in the root directory of the package
being edited. This will compile any modified files, and link and install a new executable. You
can do this from within the CL and immediately run the revised program.

We should emphasize again that, although we document the procedures for making
changes to the software here, to avoid introducing bugs we do not recommend changing any of
the IRAF software except in unusual (or at least carefully controlled) circumstances. To make
custom changes to an application, it is best to make a local copy of the full package somewhere
outside the standard IRAF system. If changes are made to the IRAF system software it is best
to set up an entire new copy of IRAF on a machine separate from the normal production instal-
lation, so that one can experiment at will without affecting the standard system. An alternative
which does not require duplicating the full system is to use the IRAFULIB environment

- 22 -

variable. This can be used to safely experiment with custom changes to the IRAF system
software outside the main system; IRAFULIB lets you define a private directory to be searched
for IRAF global include files, libraries, executables, etc., allowing you to have your own private
versions of any of these. See the system notes files for further information on how to use
IRAFULIB.

4. Graphics and Image Display
IRAF itself is device and window system independent, hence it can be used with any win-

dowing system such as X11 or SunView, or with hardware graphics and display devices.
Nowadays most people will be running IRAF on a UNIX workstation under X11. The
X11IRAF support package, which includes the xgterm and ximtool programs for graphics and
imaging, is system independent and is distributed separately from IRAF. IRAF can also be
used with other graphics and image display servers, e.g. xterm and saoimage. The x11iraf utili-
ties are available from the IRAF network archives or by contacting IRAF site support.

Most people will prefer to use xgterm and ximtool (or a similar display tool such as saoim-
age) for IRAF graphics and imaging. xgterm is based on xterm, providing an equivalent vt100
(text window) capability but a much enhanced graphics capability. ximtool provides a general
interactive image display capability, including support for multiple image frame buffers and
frame blinking, independent zoom, pan, and color enhancement for each frame, and many other
features. Both programs are implemented at the host level as general purpose window system
tools, and are useful independently of IRAF. Detailed documentation on the basic operation and
use of these programs is available with the X11IRAF distribution. Our concern in this docu-
ment is with the use of these programs within IRAF.

4.1. The X11 environment
The graphics and image display tools provided with IRAF operate within the X11 win-

dowing environment much like the standard tools provided with X11. To help illustrate the use
of these tools, IRAF is distributed with a sample X11 environment already configured for the
IRAF account, the exact nature of these files depends on the platform. This consists, for exam-
ple on a Sun/IRAF system, of the following files in the IRAF account login directory, iraf$local.

.Xdefaults Sets up the defaults for how the window system looks, e.g.,
defines the X resources controlling window colors, fonts, etc.

.openwin-menu An example of a simple custom rootmenu for the OpenLook win-
dow manager, including entries for xgterm and ximtool. Other
window managers will rely on a different configuration file, e.g.
".mwmrc" for Motif, ".twmrc" for the twm window manager, etc.

.xinitrc Executed at window system start up time to create all the win-
dows, some systems require that this file be named .xsession.

No one screen layout will suit all users or all applications. Everyone will wish to custom-
ize the workstation screen to suit their preferences and the type of work they are doing. How-
ever, the configuration provided works and should be useful as an example of how to make
things function correctly.

4.2. Vector graphics capabilities
The standard graphics terminal emulator for IRAF under X11 is xgterm, which emulates a

conventional dual plane text/graphics terminal. On systems to which xgterm has yet to be
ported, such as VMS, xterm is typically used, this is an equivalent terminal emulator but the
graphics support isn’t quite as nice. This software terminal is driven via an ASCII datastream
like a conventional hard terminal (except that the effective baud rate is much higher). The text

- 23 -

window behaves like the system console and the graphics window behaves like a Tektronix
4012, plus some IRAF oriented extensions. Since xgterm emulates standard text and graphics
devices non-IRAF programs can easily be run as well as IRAF programs.

Configuring IRAF to use xgterm is very simple. The following command does the job.
This is normally executed by the login.cl or loginuser.cl file at login time.

cl> stty xgterm

Further information on xgterm may be found in the xgterm.info file in the IRAF network
archive with the xgterm binaries or by contacting site support.

Xterm users can define the window type similarly, i.e.

cl> stty xterm # or
cl> stty xtermjh

Since xterm lacks a true status line users may prefer the second example which puts status out-
put on the text window instead of overwriting the graphics window.

4.3. Image Display capabilities
Image display for IRAF running in the X11 environment is provided by XImtool or a com-

parable IRAF-compatible display server (e.g. SAOimage). The current XImtool program pro-
vides a basic display capability, including programmed access from the IRAF environment to
load images, interactive windowing of the display, pseudocolor, an interactive image cursor
readback capability, zoom and pan, a variety of frame buffer sizes, independent frame buffer and
display window sizing, up to four frames, each with its own state, and programmable frame
blink. ximtool runs as a display server, meaning that it sits idle most of the time, waiting for
some client, e.g., IRAF, to send it an image to be displayed via some form of interprocess com-
munication.

To use ximtool from within IRAF one must define the logical device and enable image
cursor input. For example,

cl> reset stdimage = imt512

would configure IRAF and ximtool for use with a 512 pixel square frame buffer (image display
image memory). A variety of frame buffer sizes are predefined; see the imtoolrc file (nor-
mally in /usr/local/lib) for a complete list of possible configurations or use the IRAF gdevices
command.

The image cursor is enabled by

cl> reset stdimcur = stdimage

This is the default for Unix/IRAF. Setting stdimcur to "text" disables the image cursor,
allowing cursor values to be typed in interactively in the terminal window. This is useful, for
example, when running image oriented programs from a simple terminal.

The standard IRAF interface to the display server is the display program in the TV pack-
age. Automatic determination of the optimum intensity mapping to the 200 ximtool greylevels
is provided. Entire frames can be displayed, or one can write to subregions of the display.
Other programs useful with the image display include imexamine, used to interactively examine
images under image cursor control, imedit, used to edit images using the display, and tvmark,
used to write color graphics into a display frame.

The display server has the capability of displaying the cursor (mouse) position and pixel
value in image pixel units as the mouse is moved about in the window. In addition, text file
cursor lists can be generated and displayed, or the image cursor can be read interactively from
within IRAF. The image cursor may be called up at any time by typing

cl> =imcur

into the CL. Applications programs which read the interactive image cursor will do this

- 24 -

automatically during program execution.

4.4. Using the workstation with a remote compute server

A common mode of operation with a workstation is to run IRAF under X11 directly on
the workstation which runs IRAF, accessing files either on a local disk, or on a remote disk via
a network interface (NFS, IRAFKS, etc.). It is also possible, however, to run X11 with xgterm
and ximtool on the workstation, but run IRAF on a remote node, e.g., some powerful compute
server such as a large Sun server or a fast Linux PC, possibly quite some distance away. This is
done by logging onto the workstation, starting up X11 and a xgterm window, logging onto the
remote machine with rlogin, telnet, or whatever, and starting up IRAF on the remote node.

After IRAF comes up one need only type

cl> stty xgterm
cl> reset node = hostname!

to tell the remote IRAF that it is talking to a xgterm window and that the image display is on
the network node hostname. The trailing exclamation point is required in V2.11 and later ver-
sions of IRAF to avoid interpretation of general environment variables as network logical node
names. For this to work IRAF networking must be enabled between the two hosts (see §2.2.7).
Alternatively, an inet socket may be used to connect to the ximtool directly by defining an
IMTDEV environment variable. For example, suppose you are running IRAF on remote node
but wish to display to an ximtool running on your workstation which is in a different network
domain, to do this define something like

% setenv IMTDEV inet:5137:foo.bar.edu

prior to logging into the CL. This overrides the normal display connection selection and tells
IRAF to display to inet socket 5137 running on node "foo.bar.edu" (5137 is the default inet
socket for ximtool). The advantage here is that one doesn’t need to enable iraf networking for a
host that may only temporarily be used.

In this mode one is effectively using the workstation as a sort of super terminal with
powerful graphics and image display capabilities. One gets the best of both worlds, i.e., a state
of the art user interface, and the compute power of a large machine. It matters little what
operating system is used on the remote machine, so long as it also runs IRAF. Except for the
details of the login sequence, operation is completely transparent; xgterm does not care whether
the process it is talking to is on a local or remote node. Performance, e.g,. for image loads, is
often better than when everything is run directly on the local node, due to the more powerful
server.

5. Interfacing New Graphics Devices
There are three types of graphics devices that concern us here. These are the graphics ter-

minals, graphics plotters, and image displays. Useful documentation for writing graphcap
entries is the GIO reference manual and the HELP pages for the showcap and stty tasks, infor-
mation on creating new graphcap entries for each type of device is covered in §2.2.6.

5.1. Graphics terminals
The IRAF system as distributed is capable of talking to just about any conventional graph-

ics terminal or terminal emulator, using the stdgraph graphics kernel supplied with the system.
All one need do to interface to a new graphics terminal is add new graphcap and termcap entries
for the device. This can take anywhere from a few hours to a few days, depending on one’s
level of expertise, and the characteristics of the device. Be sure to check the contents of the
dev$graphcap file to see if the terminal is already supported, before trying to write a new entry.
Assistance with interfacing new graphics terminals is available via the IRAF Hotline.

- 25 -

5.2. Graphics plotters
The current IRAF system comes with several graphics kernels used to drive graphics

plotters. The standard plotter interface the SGI graphics kernel, which is interfaced as the tasks
sgikern and stdplot in the PLOT package. Further information on the SGI plotter interface is
given in the paper The IRAF Simple Graphics Interface, a copy of which is included with the
IRAF installation kit or in our network archive /iraf/doc directory as "sgi.ms".

SGI device interfaces for most plotter devices already exist, and adding support for new
devices is straightforward. Sources for the SGI device translators supplied with the distributed
system are maintained in the directory iraf/unix/gdev/sgidev. NOAO serves as a clearinghouse
for new SGI plotter device interfaces; contact us if you do not find support for a local plotter
device in the distributed system, and if you plan to implement a new device interface let us
know so that we may help other sites with the same device.

The older NCAR kernel is used to generate NCAR metacode and can be interfaced to an
NCAR metacode translator at the host system level to get plots on devices supported by host-
level NCAR metacode translators. The host level NCAR metacode translators are not included
in the standard IRAF distribution, but public domain versions of the NCAR implementation for
UNIX systems are widely available. A site which already has the NCAR software may wish to
go this route, but the SGI interface will provide a more efficient and simpler solution in most
cases.

The remaining possibility with the current system is the calcomp kernel. Many sites will
have a Calcomp or Versaplot library (or Calcomp compatible library) already available locally.
To make use of such a library to get plotter output on any devices supported by the interface,
one may copy the library to the hlib directory and relink the Calcomp graphics kernel.

A graphcap entry for each new device will also be required. Information on preparing
graphcap entries for graphics devices is given in the GIO design document, and many actual
working examples will be found in the graphcap file. The best approach is usually to copy one
of these and modify it.

5.3. Image display devices
The standard image display facility for a Sun workstation running the MIT X or

OpenWindows window system is the ximtool, DS9, SAOtng, or saoimage display server. XIm-
tool is available from the /iraf/x11iraf directory of the iraf.noao.edu ftp archives, other servers
are available from the iraf.noao.edu archive /contrib directory.

Some interfaces for hardware image display devices are also available, although a general
display interface is not yet included in the system. Only the IIS model 70 and 75 are current
supported by NOAO. Interfaces for other devices are possible using the current datastream
interface, which is based on the IIS model 70 datastream protocol with extensions for passing
the WCS, image cursor readback, etc. (see the ZFIOGD driver in unix/gdev). This is how all
the current displays, e.g., imtool and ximage, and the IIS devices, are interfaced, and there is no
reason why other devices could not be interfaced to IRAF via the same interface. Eventually
this prototype interface will be obsoleted and replaced by a more general interface.

6. Host System Requirements
Any modern host system capable of running UNIX should be capable of running IRAF as

well. IRAF is supported on all the more popular UNIX platforms, as well as on PC operating
systems such as Linux, FreeBSD, Solaris, and OS X on Apple hardware.

A typical small system is a single workstation with a local disk. In a typical large installa-
tion there will be one or more large central compute servers, each with tens of Gb of disk and
many hundreds Mb of RAM, networked to a number of personal or public workstations. For
scientific use, a megapixel color screen is desirable.

- 26 -

6.1. Memory requirements
The windowing systems used in these workstations tend to be very memory intensive; the

typical screen with ten or so windows uses a lot of memory. Interactive performance will suffer
greatly if the system pages a lot. Fortunately, memory is relatively cheap. No system, includ-
ing personal diskless nodes, should be configured with less than 64 Mb of main memory; 128
Mb or more is recommended if you plan to do a lot of image processing. On servers, 256Mb,
512Mb or even 1+ Gb is not an unreasonable amount of memory to try to configure on the sys-
tem.

6.2. Disk requirements
The amount of disk required by a user depends greatly on the application, so it is hard to

recommend a minimum disk size. For a system with access to a central server, no disk or 1-2
Gb of local disk is fine. For a standalone system with no access to large server, 5-10 Gb is
about the minimum nowadays.

6.3. Diskless nodes
For an application such as programming or word processing, a diskless node connected to

a large file server is a cost effective approach delivering good performance. Some local disk for
boot, swap, and local file storage is desirable but not essential. For most IRAF applications
however, where serious image processing is planned, one is inevitably going to want to run
large batch image processing jobs directly on the server, implying that a compute rather than file
server is what is needed (i.e., one will want to avoid heavy NFS loading on the server). A disk-
less node is still viable, but one will want to run jobs which involve heavy disk i/o directly on
the server, reserving the workstation for the interactive things, e.g., graphics and image display,
and compute bound image analysis tasks. Disks are getting cheap enough that almost any
workstation equipped with say, 128-256 Mb of memory, probably warrants several Gb of local
disk for server independence, swap, and local file storage.

- 27 -

Appendix A. The IRAF Directory Structure
The main branches of the IRAF directory tree are summarized below. Beneath the direc-

tories shown are some 400 subdirectories, the largest directory trees being sys, pkg, and
noao. The entire contents of all directories other than unix, local, and dev are fully
portable, and are identical in all installations of IRAF sharing the same version number.

bin - the IRAF BIN directories
dev - device tables (termcap, graphcap, etc.)
doc - assorted IRAF manuals
lib - the system library; global files
local - iraf login directory; locally added software
math - sources for the mathematical libraries
noao - packages for NOAO data reduction
pkg - the IRAF applications packages
sys - the virtual operating system (VOS)
unix - the UNIX host system interface (HSI = kernel + bootstrap utilities)

The contents of the unix directory (host system interface) are as follows:

as - assembler sources
bin - the HSI BIN directories
boot - bootstrap utilities (mkpkg, rtar, wtar, etc.)
gdev - graphics device interfaces (SGI device translators)
hlib - host dependent library; global files
os - OS interface routines (UNIX/IRAF kernel)
reboot - executable script run to reboot the HSI
shlib - shared library facility sources
sun - gterm and imtool sources (SunView)

If you will be working with the system much at the system level, it will be well
worthwhile to spend some time exploring these directories and gaining familiarity with the sys-
tem.

