
IRAF Standards and Conventions

Elwood Downey
George Jacoby

Vesa Junkkarinen
Steve Ridgway
Paul Schmidtke

Charles Slaughter
Douglas Tody

Francisco Valdes

Kitt Peak National Observatory*
August 1983

ABSTRACT

Clearly defined and consistently applied standards and conventions are
essential in reducing the "number of degrees of freedom" which a user or pro-
grammer must deal with when using a large system. The IRAF system and
applications software is being built in accord with the standards and conventions
described in this document. These include system wide standards for data struc-
tures and files, standard coding practices, coding standards, and standards for
documentation. Wherever possible, the IRAF project has adopted or adapted
existing standards and conventions that are in widespread use in other systems.

*Kitt Peak National Observatory is operated by the Association of Universities for Research in Astronomy, Inc. under
contract with the National Science Foundation.

Contents

1. Introduction .. 1
1.1. Official Acceptance Procedure .. 1

2. System Standards ... 1
2.1. Standard Data Structures... 2

2.1.1. Text and Binary Files .. 2
2.1.2. Parameter Files .. 2
2.1.3. Imagefiles... 3

2.1.3.1. standard nomenclature for images 3
2.1.3.2. definition of a pixel ... 3

2.1.4. Datafiles ... 3
2.1.5. List Files .. 4
2.1.6. FITS... 4

2.2. Virtual File Names.. 4
2.3. Standard Filename Extensions .. 5
2.4. One Indexing... 5
2.5. The Procedure Naming Convention for the System Libraries 5

2.5.1. Orthogonality ... 6
2.5.2. Standard package prefixes.. 6
2.5.3. Standard type suffixes.. 7

2.6. Mapping of External Identifiers .. 7
2.7. Conventions for Ordering Argument Lists.. 8

3. Coding Standards .. 9
3.1. General Guidelines.. 9

3.1.1. Packages and Tasks ... 9
3.1.2. Procedures.. 10

3.2. Languages ... 11
3.2.1. The SPP Language .. 11
3.2.2. The Fortran Language.. 12

3.3. Standard Interfaces.. 12
3.4. Package Organization.. 13
3.5. Tasks and Processes .. 14
3.6. File Organization... 14
3.7. Header Files .. 15
3.8. Comments ... 15
3.9. Procedure Declarations.. 16
3.10. Statements ... 17

3.10.1. Statement Templates.. 17
3.11. Expressions ... 19
3.12. Constants... 20
3.13. Naming Conventions... 21

4. Portability Considerations... 21
4.1. keep it simple .. 21
4.2. use the standard interfaces .. 22
4.3. avoid machine dependent filenames.. 22
4.4. isolate those portions of a program which perform i/o 22
4.5. keep memory requirements to a reasonable level ... 22
4.6. make sure argument and function datatypes match .. 23
4.7. do not use output arguments as local variables... 23

- 2 -

4.8. avoid assumptions about the machine precision ... 23
4.9. do not compare floating point numbers for equality....................................... 24
4.10. use the standard predefined machine constants... 24
4.11. explicitly initialize variables ... 25
4.12. beware of functions with side effects.. 25
4.13. use of intrinsic functions... 26
4.14. explicitly align objects in global common .. 26

5. Software Documentation ... 26
5.1. User Documentation.. 27
5.2. System Documentation ... 27
5.3. Documentation Standards.. 28
5.4. Technical Writing.. 29

References

Standard Nomenclature

IRAF Standards and Conventions

Elwood Downey
George Jacoby

Vesa Junkkarinen
Steve Ridgway
Paul Schmidtke

Charles Slaughter
Douglas Tody

Francisco Valdes

Kitt Peak National Observatory*
August 1983

1. Introduction
Clearly defined and consistently applied standards and conventions are essential in reduc-

ing the "number of degrees of freedom" which a user or programmer must deal with when using
a large system. The user benefits from consistently applied naming conventions for packages
and tasks, and from a logical and consistently applied scheme for ordering the parameters to a
task. The programmer who must read code written by other programmers benefits from the
application of good programming practices and a uniform style.

The IRAF system and applications software is being built in accord with the standards and
conventions described in this document. These include system wide standards for data struc-
tures and files, coding standards, standards for numerical libraries, and standards for documenta-
tion.

Whenever possible, the IRAF project has adopted or adapted existing standards and con-
ventions that are in widespread use in other systems. Examples are the standard filename exten-
sions, which are adopted from UNIX (the IRAF software development system), and the coding
standard for the SPP language, which is consistent with the coding standard for the C language,
on which the design of the SPP language was based.

1.1. Official Acceptance Procedure
Software developed by programmers outside of the IRAF group must conform to the stan-

dards presented in this document to be accepted as a supported product, or to be included in the
IRAF distribution.

Software developed by programmers within the IRAF group will be inspected periodically
by another member of the IRAF group to check for adherence to the standards, for constructs
that could cause transportability problems, and to ensure that the code is upwards compatible
with future versions of the SPP language compiler and program libraries. IRAF group members
will gladly provide this service to anyone outside the group who would like to have their code
checked.

2. System Standards
This section defines those standards and conventions which pervade the system. An exam-

ple of such a fundamental convention is one-indexing. Others include the standard for generat-
ing and using virtual file names, and the procedure naming convention for the system libraries.

*Kitt Peak National Observatory is operated by the Association of Universities for Research in Astronomy,
Inc. under contract with the National Science Foundation.

- 2 -

2.1. Standard Data Structures
This section describes the fundamental data structures used by the IRAF system and appli-

cations tasks. An IRAF applications package should not access data structures other than those
described here. Applications may build their own high level structures upon text or binary files
if necessary, but the standard high level structures (particularly the imagefile and the datafile)
should be used when applicable.

2.1.1. Text and Binary Files
The most primitive data structure in the IRAF system is the file. At the most basic level

there are two types of files, text files and binary files.

Text files may contain only character data. The fundamental unit of storage is the line of
text. Character data in text files is maintained in a form which is OS (operating system) depen-
dent, and text files may be edited, printed, and so on with the utilities provided by the host OS.
Character data is stored in text files in the character set of the host OS, which is not necessarily
ASCII. Text files are normally accessed sequentially, and writing is permitted only at EOF (end
of file).

Examples of text files include program source files, CL parameter files, list files, ASCII
card image files, CL script files, and the session logfile. Text files are often used for descriptor
files which are read at run time by table driven software.

Binary files are read and written only by IRAF tasks. The fundamental unit of storage is
the char. Data is stored in binary files in the form in which it appears internally in IRAF tasks,
without any form of type conversion. Binary files are generally not transportable between
different machines. Binary files may (normally) be read and written at random.

Any device which supports reads and writes in some form may be made to appear to be a
binary file, subject to possible restrictions on seeks and writing at EOF. FIO (the IRAF file i/o
package) supports devices of arbitrary blocksize, and i/o to binary files is very efficient and may
be optimized according to the type of access expected.

Examples of binary files include imagefiles, datafiles, a graphics stream, a FITS file, and
memory.

Although a binary file may be used to store any kind of data, including text, files which
contain only text should be maintained as text files.

2.1.2. Parameter Files
The parameter file, a text file, is used to store the parameters and associated information

(type, mode, prompt, default value, etc.) for a task. Parameter files are read and written by the
CL, and are normally invisible both to the user and to the applications task.

The default parameter file for a task must reside in the same directory as the executable
file or script file associated with the task. The root name of the parameter file is the name of the
task. Parameter files have the extension ".par".

The logical directory uparm should be defined by the user to provide a place to store
updated versions of parameter files. When updating a parameter file, the CL will prepend the
first two characters of the package name to the parameter file name (to avoid redefinitions), and
save the resultant file in uparm. This package prefix should be omitted from the names of
default parameter files in the package directory.

task.par default parameter file
pk task.par updated parameter file (package pk...)

- 3 -

2.1.3. Imagefiles
The imagefile is used to store bulk data arrays of arbitrary dimension, size, and datatype.

Images of up to seven dimensions are currently supported. The length of a dimension is limited
by the size of a long integer on the host machine. A full range of datatypes, from unsigned char
through complex, are supported.

The fundamental unit of storage for an imagefile is the pixel. All the pixels in an image
must be of the same datatype. The dimensions, size, and datatype of an image are fixed when
the image is created.

2.1.3.1. standard nomenclature for images
The axes of a two dimensional image divide the image into lines and columns. A three

dimensional image consists of one or more bands, each of which is a two dimensional image,
all of which are the same size and datatype.

The names of procedures, variables, and so on in software which accesses images should
be derived from the standard names line, column, band, and pixel. The use of the term row in
place of line is discouraged, despite the historical use of row at KNPO. The line, column, band
nomenclature is a defacto international standard, not only in the image processing literature, but
at most astronomical data reduction centers as well.

Examples of standard identifiers include nlines, ncols, npix, and ndim, referring respec-
tively to the number of lines, columns, pixels, or dimensions to be operated upon.

2.1.3.2. definition of a pixel
Given an image of dimension N, a pixel is defined as the datum whose coordinates within

the image are given by the subscript [x1,x2,...,xN], where the first index in each dimension has
the value one, and where i is the column index, j the line index, k the band index, and so on.
The dimensionality of the image is given by the number of subscripts. The value of a pixel is
not a dimension.

If an array of pixels is to be interpolated, the question of the extent or size of a pixel
arises. In the IRAF system a pixel is defined as a mathematical point, and has no extent. This
is in contrast to some other systems, which have adopted the "physical" definition of a pixel,
i.e., pixel i is assumed to extend from [i−0.5] to [i+0.5].

Thus, given an array of N pixels, an IRAF interpolant will return an indefinite value at the
points [1−eps] and [N+eps], where eps is a very small number. An array of N pixels contains
N−1 subintervals. If an array of N pixels is expanded by interpolating every 0.5 pixels, an array
of 2N−1 pixels will result. Mapping an array of N pixels into an array of 2N pixels requires a
stepsize of (N−1)/(2N−1) pixel units.

2.1.4. Datafiles
The datafile provides a database management capability for the IRAF system. The

datafile is used to store records. A record consists of an ordered set of fields, each of which
has a name, a datatype, and a value. The structure of a datafile is defined by the applications
program, and a description of that structure is saved in the datafile itself. It is this self describ-
ing nature of datafiles which makes database management possible.

The datafile has many advantages over the old technique of writing an array of binary
records in a headerless file, via FIO write calls. Datafiles are self documenting, can be manipu-
lated by the standard database management tools, and the structure of the records in a datafile
can be modified as a program evolves, without losing the capability to access old datafiles.

- 4 -

2.1.5. List Files
The list file is a text file, each line of which comprises one element of the list. Lists are

used to drive tasks in batch or semibatch mode. A typical list defines a set of files, images,
records, coordinates of objects, etc. to be processed by a task.

Lists should be maintained as text files to take advantage of the ability of the CL to pro-
cess text files. Lists maintained in text form can be created by i/o redirection, and are easily
edited, sorted, filtered, inspected, and so on. Lists can be input to tasks using list structured
parameters, redirection of the standard input, and templates.

2.1.6. FITS
The FITS standard of the AAS and IAU [1] is the standard format for image data entering

and leaving the IRAF system. The FITS format will be used both for image data transmitted by
magnetic tape between machines, and for image data transmitted between machines by other
means (i.e., via a network).

Proposed extensions to the FITS standard may provide a means for transmitting tabular
data (such as a list), as well as an efficient means for transporting text files. These extensions
will be implemented in the IRAF system when a draft standard is received from the FITS stan-
dards committee of the AAS.

2.2. Virtual File Names
A file name may be specified in a machine independent fashion, or as an OS dependent

pathname. A machine independent filename is called a virtual file name (VFN). The ability of
the system to deal with OS dependent filenames is intended primarily as a convenience feature
for the user. Applications programs and CL script tasks should be written in terms of virtual
file names for maximum transportability.

A virtual file name has the following form:

ldir$root.extn

where

field usage

ldir logical directory or device name
root root or base file name
extn extension denoting the type of file

The ldir and extn fields are optional. The logical directory field, if present, must be delim-
ited by the character $. The backslash character can be used to escape characters such as $, if
required in OS dependent filenames.

The root and extension fields may contain up to 20 characters selected from the set [a-zA-
Z0-9 +−#.]. A file name may not contain any whitespace. The extension field should not
exceed three characters. The extension field is separated from the root field by the character "."
(dot). If the root field contains one or more occurrences of the dot character, the final dot del-
imited field is understood to be the extension, and the remaining fields are considered to be part
of the root.

Purely numeric filenames are legal virtual file names. If the first character of a file name
is a digit, the character "I" will be prepended to generate the OS pathname. Thus, the filenames
"I23" and "23" refer to the same file. Numeric filenames are reserved for use by the user as a
convenient way to name imagefiles, and should not be used in programs or script tasks.

- 5 -

2.3. Standard Filename Extensions
A number of standard filename extensions are defined to identify those types of files which

are most commonly used in IRAF programs and by users of the IRAF system. These exten-
sions reflect the selection of UNIX as the IRAF software development system, but transportabil-
ity is not compromised since the extension field is part of a VFN (and is therefore mapped in a
machine dependent way).

Standard Filename Extensions
Extension Usage
.a archive or library file
.c C language source
.cl Command Language script file
.com global common declaration
.df IRAF datafile
.f Fortran 77 source
.h SPP header file (contains global defines)
.hlp Lroff format help text
.ms Troff format text
.o object module
.par CL parameter file
.pix pixel storage file (part of an imagefile)
.s assembler language source
.x SPP language source

Note that no extension is assigned for executable files (executable files are not directly
accessed by IRAF programs or utilities). Certain of these extensions may have to be mapped
into a different form in the process of converting a VFN to an OSFN (i.e., on most operating
systems, ".a", ".f", ".o", and ".s" will be mapped into some other extension at file access time by
the system interface routine zmapfn).

2.4. One Indexing
The IRAF system is one-indexed. This convention is applied without exception in the

system software, and should be applied equally rigorously in applications code. Past systems
(i.e., the KPNO IPPS system and the original KPNO Forth Camera system) have shown that
mixing zero and one indexing in the same system is confusing, and is the source of many errors.

Note that the one-indexing convention applies to both numbering systems and offsets.
Thus, the coordinates of the first pixel in a two dimensional image are [1,1], and the offset of
the first character in a file is also one. Scaling an offset involves subtracting the constant one, a
multiply or divide to perform the actual scaling, followed by the addition of the constant one.

The awkwardness of one-indexing for calculating offsets (in comparison with zero-
indexing) is balanced by the logical simplicity of one-indexed numbering schemes. The one-
indexing convention was selected for IRAF because numbering schemes are more visible to the
user than is offset arithmetic, and because IRAF is a Fortran based system.

2.5. The Procedure Naming Convention for the System Libraries
With the exception of certain "language" level identifiers (open, close, read, write, map,

error, etc.), all procedures in the packages comprising the IRAF program and system interfaces
are named according to a simple convention.

- 6 -

The purpose of the procedure naming convention is to make procedure name selection log-
ical and predictable, and to minimize collisions with the names of the procedures (and other
external identifiers) used in applications programs. This latter problem is a serious matter in a
large system which is Fortran based, due to the global nature of all procedure and global com-
mon names, and the restriction to six character identifiers.

The procedure naming convention should not be used to generate names for procedures in
applications code. The procedure naming convention purposely results in rather obscure
identifiers. This is necessary for system library routines, to minimize the possibility of colli-
sions, but at the highest level (in applications code and in CL packages), readability is the most
important consideration.

The names of system library procedures are generated by concatenating the following
fields:

package prefix // opcode // type suffix

The package prefix identifies the package to which the procedure belongs, and is one to
three characters in length. The opcode is a concise representation of the function performed by
the procedure. The type suffix identifies the datatype of the function value or primary operand.

An example of the use of the procedure naming convention is the generic function clgpar,
in the CLIO package. In this case, the package prefix is "cl", the opcode is "g" (get), and the
(abstract) type suffix is "par". The generic function clgpar is implemented with the following
set of typed procedures:

clgpar → clgetb, clgetc, clgets, clgeti, clgetl, clgetr, clgetd, clgetx

or, more concisely,

clgpar → clget[bcsilrdx]

2.5.1. Orthogonality
The procedure naming convention is an example of a three dimensional "orthogonal" nam-

ing convention. The VAX instruction set and associated mnemonics are another example. As
we have seen, often two dimensions are sufficient (no type suffix) to encode the names of the
procedures in a package. Occasionally it is necessary to have more than three dimensions, as in
the following example from the image i/o package:

getpix, putpix → im[gp][pls][123][silrdx]

where the fields have the following significance:

im[get/put][pixel/line/section][dimension][datatype]

The five dimensional expression on the right side represents a total of 108 possible pro-
cedure names (imgp1s, etc.). A getpix or putpix statement is easily converted into a call to the
appropriate low level Fortran subprogram by analyzing the subscript and applying the above
generating function.

2.5.2. Standard package prefixes
A table of the package prefixes for the packages comprising the IRAF system libraries is

shown below.

- 7 -

Standard Package Prefixes
package prefix

CLIO cl command language i/o
FIO f file i/o
MEMIO m (or mem) memory i/o
VSIO v virtual structure i/o
IMIO im image i/o
MTIO mt magtape i/o
GIO g graphics i/o
VOPS (1-dim) a vector operators
VOPS (2-dim) m matrix operators

byte primitives byt
char utilities chr
error handling err (or xer)
pattern matching pat
string utilities str
process control t
exception handling x
OS interface z

2.5.3. Standard type suffixes
The type suffix is optional, and is used when the operator is implemented for several

different types of data. The type suffix is a single character for the primary data types, but may
be up to three characters for the abstract data types ("file", "string", etc.). The standard type
suffixes are as follows:

Standard Type Suffixes
datatype suffix

bool b (primary types)
char c
short s
int i
long l
real r
double d
complex x
file fil (abstract types)
string str
cursor cur
CL parameter par
character constant cc

2.6. Mapping of External Identifiers
The SPP language maps identifiers longer than the six characters permitted by the Fortran

standard into identifiers of six or fewer characters. Both local and external identifiers are
mapped. The mapping convention applies to all procedures in the system libraries.

A simple, fixed mapping is used to facilitate the use of symbolic debuggers without hav-
ing to resort to a compiler listing. A simple mapping convention also makes it easier for the

- 8 -

programmer to foresee possible redefinitions.

The mapping function used is known as the "5+1" rule. The six character Fortran
identifier is formed by concatenating the first five characters and the last character of the long
identifier from the SPP source code. Underscore characters are ignored.

Identifiers in SPP source code should be chosen to maximize readability, without concern
for the length of an identifier. The compiler will flag spelling errors and identifiers which map
to the same six character Fortran identifier (if both identifiers are referenced in the same file).

Examples:

XPP identifier Fortran identifier

strmatch STRMAH (library procedure)
read template READTE (procedure)
get keyword GETKED (procedure)
ival already used IVALAD (boolean variable)
days per year DAYSPR (integer variable)

2.7. Conventions for Ordering Argument Lists
The convention for ordering argument lists applies to both CL tasks and compiled pro-

cedures. This convention should serve only as a guideline: in practice, other considerations
(such as symmetry) may produce a more natural ordering.

Argument lists may contain operands and their dimensions, objects used for working
storage, control parameters, and status return values (organized in that order). The types of
operands may be further broken down into those which are input and those which are output,
ordered with the input parameters at the left and the output parameters at the right.

More precisely, the ordering of operands and parameters in the argument lists of pro-
cedures and tasks is as follows:

(1) The principal operand or operands (data objects) dealt with by the procedure, ordered
with input at the left and output at the right. Examples of primary operands include
file names, file descriptors, image header pointers, vectors, and so on.

(2) Dimension parameters, offsets, position vectors, or other objects which can be con-
sidered part of the specification of an operand. If the operands in (1) are individually
dimensioned, the dimension argument(s) should immediately follow the associated
operand. If several operands share the same dimension arguments, these arguments
should follow the last operand in the group.

(3) Objects used for working storage, and their dimensions.

(4) Any control parameters, flags, options, etc., used to direct the operation of the pro-
cedure. Unless there is another ordering which is clearly more logical, these should
be arranged in alphabetical order.

(5) Status return parameter or parameters, if any.

Argument lists should be kept as short as possible if they are to be easily remembered by
the programmer (ideally, no more than three arguments). Short argument lists decrease the cou-
pling between modules, increasing modularity and making programs easier to modify. Any pro-
cedure which requires more than five arguments should be carefully examined to see if it should
be broken into several smaller procedures.

- 9 -

3. Coding Standards
Programs are read far more often than they are written. The readability of a program is a

function of the style in which it is written. The effectiveness of a particular style in enhancing
the readability of a program is increased when that style is applied consistently throughout the
entire program. The readability of the code within a system is maximized when a single, well
designed style is applied consistently throughout the system. Since large systems are written by
many people (though often read by a single person), it is necessary to document the standard
programming style for the system, as clearly as can be done.

The standard programming style for a system is a major part of the coding standard for
that system (though not the whole story). The benefits and difficulties of coding standards are
well summarized by the following excerpt from a paper describing the evolution of the Ingres
data base management system [2]:

"The initial reaction was exceedingly negative. Programmers used to having an
address space of their own felt an encroachment on their personal freedom. In spite
of this reaction, we enforced standards that in the end became surprisingly popular.
Basically, our programmers had to recognize the importance of making code easier
to transfer to new people, and that coding standards were a low price to pay for this
advantage..."

"Coding standards should be drawn up by a single person to ensure unity of design;
however, input should be solicited from all programmers. Once legislated, the stan-
dards should be rigidly adhered to."

The standard language for IRAF system and applications code is the Subset Preprocessor
Language (SPP), which was patterned after the C language of Kernighan and Ritchie [3]. Much
of the text in the following pages was taken almost verbatim from reference [4], which defines
the coding standard adopted at Bell Labs for the C language. Since such a well defined (and
widely used) standard already exists, we have adopted the C coding standard as the core of the
standard for the SPP language.

3.1. General Guidelines
In this section we discuss the philosophy governing the decomposition of the IRAF system

into packages and tasks. The same principles are seen to apply to the decomposition of tasks or
programs into separately compiled procedures.

Our intent here is to summarize the structural characteristics expected of a finished appli-
cations package. Once a package has been coded and tested, however, it is too late to change its
structure. The functional decomposition of a package or program into a set of modules, the
selection of names for the modules, and the definition of the parameters of each module, is the
purpose of the detailed design process. A discussion of the techniques and tools used to per-
form a detailed design is beyond the scope of this document.

3.1.1. Packages and Tasks
The IRAF system and applications code is organized into packages, each of which

operates upon a particular kind of data. These packages are independent, or are loosely coupled
by the datafiles, imagefiles, or lists on which they operate.

Close coupling between packages (for example, by means of specialized data structures)
should be avoided. Leave the coupling of modules from different packages to the user, or write
high level script tasks ("canned" procedures) to streamline commonly performed operations,
after the packages involved have been designed and coded.

A package consists of a set of tasks, each of which should perform a single function, and

- 10 -

all of which operate on the package data structures. The name of each task should be carefully
chosen to identify the function performed by the task (a novice user should be able to guess
what function the task performs without having to read the documentation). Command names
should not be abbreviated to the point where they have meaning only to the package designer.

The tasks in a package should be data coupled, meaning that their operation is defined
entirely in terms of the package data structures. Avoid control coupling, which occurs when
one task controls the functioning of another by passing a control parameter or switch. A task
should not modify another tasks parameters, nor should it modify its own input parameters.

A CL callable task may reference its own local parameters, plus two levels of global
parameters (the package parameters and the CL parameters). Global parameters should be
used with care to avoid tasks which are highly coupled. For example, if a task were to use the
the CL "scratch" parameters i and j for loop control variables, that task would be strongly cou-
pled to any other task in the system, now and in the future, which also references the global
parameters i and j (with disastrous results). The CL scratch parameters are provided for the
convenience of the user: they should not be used by tasks.

Global parameters can actually reduce the coupling between tasks when the alternative
would be to add a parameter to the set of local parameters for each task in the package. Such
parameters are normally set only by the user (or by a user script task), and are read only to all
tasks in the package. Examples of such parameters might be the names of the package datafiles,
or parameters which describe the general characteristics of the data to be operated upon. If in
doubt, use a local parameter instead of a global parameter.

A task may be implemented as a script task, written in the CL, or as a compiled pro-
cedure or program, written in the SPP language. Any number of related or unrelated programs
may be linked together to form a single executable process. The decision to implement a task
in the CL or in the SPP language is irrelevant to the package designer, as is the grouping of pro-
grams to form physical processes.

3.1.2. Procedures
The guidelines for implementing a program as a set of separately compiled procedures are

similar to those for decomposing a package into a set of tasks. Each procedure should perform
a single function, should be well named, should be data coupled, and should have as few
parameters as possible.

Procedures which perform a single function are less complex than multiple function pro-
cedures, tend to be less strongly coupled to their callers, and are more likely to be useful else-
where in the program, and in future programs. A program structured as a hierarchy of single
function, minimally coupled procedures is highly modular, and generally much easier to modify,
than a program consisting of multiple function (monolithic), strongly coupled procedures.
Reducing the coupling between procedures makes it less likely that a change to one procedure
will affect the functioning of another procedure somewhere else in the system.

It has long been argued that a monolithic procedure is more efficient than one which calls
external procedures to perform subfunctions. While there is some truth to this claim, efficiency
is only one of the measures of the quality of software. Other factors such as reliability, robust-
ness, flexibility, transportability, simplicity, and modifiability are often more important. Furth-
ermore, it is almost always true that five or ten percent of the code accounts for ninety percent
of the execution time, and it will prove easier to optimize that five or ten percent of the code if
it is in the form of isolated, single function procedures (a small, simple procedure is easily
replaced by an equivalent routine written in assembler, for example).

A section of code which is common to two or more modules, which is functional (per-
forms a single, well defined function), and which is not strongly coupled to the rest of the code
in the parent module, should be extracted to form a separate module. Not only does this reduce
the amount of code which must be tested and debugged, it also makes the program easier to
modify, since only a single section of code must be changed to modify the function in question.

- 11 -

Less obviously, a section of code should be extracted to form a new module even if the
new module is only called from one other module, if the new module is functional, and is likely
to be useful in future programs. A new module should also be created if doing so removes a
sizable section of code from the parent module, significantly reducing the complexity of the
parent module (provided the new module is functional and not strongly coupled). If the control
flow of a procedure is so deeply nested that statements will no longer fit on a line, that is an
indication that code should be extracted to form a new module.

The name of a procedure, like that of a task, should be carefully selected to identify the
function performed by the procedure. The function of each subprocedure referenced by a pro-
cedure should be evident to the reader, without having to go look up the source for the indivi-
dual subprocedures. For similar reasons, the function of each of the arguments of a subpro-
cedure should be evident without having to look up the source or documentation for the pro-
cedure. The define feature of the SPP language is particularly useful for parameterizing argu-
ment lists.

Reducing the number of arguments to a procedure reduces the coupling of the procedure to
its callers, making the procedure easier to modify and use, reducing the possibility of a calling
error, and usually increasing the functionality (usefulness) of the procedure. Most procedures
should have no more than three arguments: procedures with more than five arguments should be
examined to see if they should be decomposed into several smaller procedures.

Psychologists have shown that one 81/2 by 11 inch sheet of paper (i.e., one page of a com-
puter listing) contains about the amount of information that most people can comfortably handle
at one time. Procedures larger than one or two pages should be examined to see if they should
be broken down further. Conversely, procedures which contain fewer than five lines of code
should be examined to see if they should be merged into their callers. If a procedure contains
more than ten declarations for local variables or arrays, that is another indication that the pro-
cedure probably needs to be decomposed into smaller functional units.

A program is more resistant to changes in the external environment (and therefore more
transportable) if that part of the program which interfaces to the outside world is isolated from
the part which processes the data. This tends to happen automatically if the "single function"
guideline is followed, but nonetheless one should be consciously aware of the need to isolate
those portions of a program which get parameters, access external data structures, and format
the output results.

Numerical routines, transformations, and so on should almost always be implemented as
separate procedures. These are precisely those parts of a program which are most likely to be
useful in future programs, and they are also among the most likely to be modified, or replaced
by functionally equivalent modules, as the program evolves.

3.2. Languages
The standard language for IRAF systems and applications code is the SPP language [5],

which is mechanically translated into Fortran during compilation. Fortran itself may be used for
purely numerical routines (no i/o) which are called from programs written in the SPP language.

IRAF programs must be written in the SPP language, rather than Fortran, because the rou-
tines in the IRAF i/o libraries are callable only from the SPP language. The IRAF i/o libraries
are interfaced to the SPP language because they are written in the SPP language.

3.2.1. The SPP Language
The IRAF Subset Preprocessor language (SPP) implements a subset of the full language

scheduled for development in 1984. The SPP language is defined by the SPP Reference Manual
[5]. Be warned that present compilers for the SPP language accept constructs that are not per-
mitted by the language standard. As better compilers become available, programs using such
constructs (i.e., parenthesis instead of brackets for array subscripts), will no longer compile. If

- 12 -

you are not sure what the language standard permits, have your code checked periodically by
someone who is familiar with the standard.

3.2.2. The Fortran Language
The Fortran language is defined by the ANSI standards document ANSI X3.9-1978 [6].

Be warned that most Fortran compilers accept constructs that are not permitted by the language
standard. When a Fortran module developed on one machine is ported to another, programs
using such constructs (i.e., the DO WHILE and TYPE constructs provided by the DEC Fortran
compilers), will no longer compile, or will run incorrectly.

Fortran is used in IRAF applications only for numerical subroutines and functions, such as
mathematical library routines. The following Fortran statements should not be used in Fortran
subprograms that are to be called from an IRAF program (use of one of these statements would
probably result in a loader error):

all statements which involve i/o
CHARACTER
BLOCK DATA
(blank) COMMON
PAUSE
PROGRAM
STOP

The SPP datatypes int, real, double, and complex are equivalent to the Fortran datatypes
INTEGER, REAL, DOUBLE PRECISION, and COMPLEX. These are the only datatypes
which should be used in IRAF callable Fortran modules.

There is no single widely accepted coding standard for the Fortran language. Fortran code
being ported into the IRAF system should remain in the form in which it was originally written,
except for the removal of the statements listed above. If extensive modifications are required,
the modules should be recoded in the SPP language. All new software should be written in the
SPP language.

3.3. Standard Interfaces
The programmer should be familiar with the routines in the packages comprising the IRAF

program interface, and should use these routines where applicable. This practice reduces the
amount of code which must be written and debugged, and simplifies the task of the newcomer
who must read and understand the code for the package. Furthermore, optimizations are often
possible in system library routines which would be inappropriate or difficult to perform in appli-
cations modules.

Only procedures which appear in the documentation for a package (the external
specifications of the package) should be called from programs external to the package. The
external specifications of a package define the interface to the package. The major interfaces of
a large system are normally documented and frozen early in the lifetime of the system. Freez-
ing an interface means that its external specifications stop changing; the internal specifications
of the code beneath the interface can and will continue to change as the system evolves.

Calling one of the internal, undocumented procedures in a package, or directly accessing
the internal package data structures, is known as bypassing or violating the interface. Violat-
ing an interface is a serious matter because it results in code which works when it is coded and
tested, but which mysteriously fails some months later when the programmer responsible for
maintaining the called package releases a new version which has been modified internally, even
though its external specifications have not changed.

- 13 -

Interfaces are often violated, albeit unintentionally, when a programmer copies the source
for one of the documented procedures in a package, changes the name, and modifies it to do his
bidding. This may result in the programmer getting his or her job done a bit faster, but must be
avoided at all costs because sooner or later the resultant software system is going to fail.

Worse yet, there is no guarantee that when the failure occurs, it will occur in that part of
the system written by the programmer who violated the interface. Activation of the offending
module may corrupt the internals of the called package, resulting at some indefinite point later
in an apparently unrelated error, which may be difficult to trace back to the module which origi-
nally violated the interface. Typically, the error will appear only infrequently, when the system
is exercised in a certain way.

Violating interfaces results in an unreliable system. If such a problem as that described
above happens very often, the systems programmer charged with maintaining the system will
become afraid to change systems code, and the result will be a system which is hard to modify,
and which will eventually have to be frozen internally as well as externally. At that point the
system will no longer be able to evolve and grow, and eventually it will die.

Other common ways in which interfaces are violated include communicating directly with
the host operating system (bypassing the system interface), communicating directly with the CL,
or sending explicit escape sequences to a terminal. If one were to access an external image for-
mat by calling C routines interfaced directly to UNIX, for example, one would be bypassing the
system interface, and the transportability of the applications program which did so would be
seriously compromised.

The CL interface may be violated by sending an explicit command to the CL, by reading
from CLIN or writing to CLOUT, or by directly accessing the contents of a parameter file.
Sending a command to the CL violates the CL interface because a task must know quite a bit
about the syntax of an acceptable CL command, as well as the capabilities of the CL, to send
such a command.

From the point of view of a task, the CL is simply a data structure, the fields of which
(parameters) are accessed via clget and clput procedures. Programs which do not expect the CL
to be anything more than a data structure will be immune to changes in the CL as it evolves. In
the future we might well have several different command languages, each with a different syntax
and capabilities. An IRAF task which does not attempt to bypass the CL interface will be exe-
cutable from any of these command languages, without modification or even recompilation.

3.4. Package Organization
Each package should be maintained in its own directory or set of directories. The name of

the package directory should be the name of the package, or a suitable abbreviation.

A package consists of source files (".x", ".f", ".cl", ".h", ".com"), documentation (".hlp"
and ".ms" files), parameter files (".par"), and executable modules. If the package is small it will
be most convenient to maintain the package in a single directory. The package directory should
contain a file named "Readme" or "README", describing the function of the package, and
refering the reader to more detailed package documentation.

If a package is too large to be maintained in a single directory, two subdirectories named
bin and doc should be created. The package directory should contain the sources, the Readme
file, and a file named "Makefile" if Make is used to maintain the package. The bin directory
should contain the executable files and the default parameter files (the CL requires that these be
placed in the same directory). The doc directory should contain the design documentation,
reference manuals, user’s guides, and manual pages.

The programmer should develop and maintain a package in directories located within the
programmer’s own directory system. When the package is released, an identical set of direc-
tories will be created within the IRAF directory system. Subsequent releases of new versions of
the package will be a simple matter of copying the files comprising the new package into the

- 14 -

IRAF directories, and documenting the differences between the old and new versions of the
package.

This procedure makes a clear distinction between the current release of the package and
the experimental version, buffering the user from constant changes in the software, yet giving
the programmer freedom to experiment and develop the software at will.

3.5. Tasks and Processes
The task statement of the SPP language is used to group one or more compiled tasks (pro-

grams) together to form an executable process. As noted earlier (§3.1.1), the grouping together
of programs to form a physical process is a detail which is irrelevant to the structure of the
package.

The grouping of several programs together to form a single process can, however, result in
significant savings in disk space by replacing a number of executable files by a single (slightly
larger) file. The same technique can also have a significant impact on the efficiency of a CL
script, by eliminating the overhead of process initiation required when each task called by the
CL resides in a different executable file. In the case of a simple task which executes in a few
tens of milliseconds, the overhead of process initiation could easily exceed the time required to
actually execute the task by one or two orders of magnitude.

The user of a package may well wish to change the way in which programs are grouped
together to form processes, in order to minimize the overhead of process initiation when the
programs are executed in a sequence peculiar to the user’s application. To make it easier to
modify the grouping of tasks to form processes, the task statement should be placed in a file by
itself, rather than including it in the file containing the source for a program.

In other words, the task statement should be decoupled from the source for the programs
which it references. If this is done, then regrouping is a simple matter of editing the file con-
taining the task statement, editing the package script task (which associates tasks with execut-
able files), and compiling the new task statement.

3.6. File Organization
Each program or task in a package should be placed in a separate file. The name of the

file should be the same as the name of the top level module in the file. This practice makes it
easy to locate the source for a module, and speeds compilations. The Make and Mklib utilities
are particularly useful for automatically maintaining programs and libraries consisting of many
small files.

A file consists of various sections that should be separated by several blank lines. The
sections should be organized as follows:

(1) Any header file includes should be the first thing in the file.

(2) A prologue describing the contents of the file should immediately follow the
includes. If the prologue exceeds four lines of text, it should be enclosed in .help ...
.endhelp delimiters, rather than making each line of text a comment line. Large
blocks of texts are easier to edit if maintained as help blocks, and placing such pro-
gram documentation in a help block makes it accessible to the online help utilities.

(3) Any parameter or macro definitions that apply to the file as a whole are next.

(4) The procedures come last. They should be in a meaningful order. Top-down is gen-
erally better than bottom up, and a "breadth-first" approach (functions on a similar
level of abstraction together) is preferred over depth-first (functions defined as soon
as possible after their calls). Considerable judgment is called for here. If defining
large numbers of essentially independent utility procedures, consider alphabetical

- 15 -

order.

3.7. Header Files
Header files are files that are included in other files prior to compilation of the main file.

A header file contains a number of define statements, defining symbolically the constants, struc-
tures, and macros used by a subsystem. Some header files are defined at the system level, like
<imhdr.h> which must be included in any file which accesses the image header structure.
Other header files are defined and used within a single package.

Absolute pathnames should not be used to reference header files. Use the <name> con-
struction to reference system header files. Non-system header files should be in the same direc-
tory as the source files which reference them. Header files should be functionally organized,
i.e., declarations for separate subsystems should be in separate header files. The name of the
header file should be the same as the name of the associated subsystem, and the extension
should be ".h". For example, if the name of a package were "imio", the package header file
would be named "imio.h".

Header files should not be nested. Nesting header files can cause the contents of a header
file to be seen by the compiler more than once. Furthermore, the dependence of a source file on
a header file should be made clear and explicit. The pattern matching utilities (match or grep)
are often used to search for the name of a particular header file, to determine which source files
are dependent upon it.

3.8. Comments
Well structured code with self explanatory procedure and variable names does not need to

be extensively commented. At a minimum, the contents of the file should be described in the
file prologue, and each procedure in the file should be preceded by a comment block giving the
name of the procedure and describing what the procedure does.

Comments within the body of a procedure should not obscure the code. Large procedures
should be broken up into logical sections (groups of statements which perform some function
that can be understood in the abstract), with one or more blank lines and (optionally) a comment
preceding each section. The comment should be indented to the same level as the code to
which it refers.

The amount of commenting required depends on the complexity of the code. Generally
speaking, if a comment appears every five lines or less, the code is either overcommented or too
complex. If a one page procedure contains no comments, it is probably undercommented.

Short comments may appear on the same line as the code they describe, but they should
be tabbed over far enough to separate them from the statements. If more than one short com-
ment appears in a block of code, they should all be tabbed to the same column.

Example 1: Compute the mean and standard deviation of a sample.

- 16 -

Ac c umu l a t e t h e s um a nd s um o f s qu a r e s o f t ho s e p i x e l s
who s e v a l u e i s wi t h i n r a ng e a nd no t i nd efin i t e .
do i = 1 , np i x

i f (s amp l e [i] ! = INDEF) {
v a l u e = s amp l e [i]
i f (v a l u e >= l c u t off && v a l u e <= h c u t off) {

ngp i x = ngp i x + 1
s um = s um + v a l u e
s ums q = s ums q + v a l u e ∗∗ 2

}
}

Compu t e t h e me a n a nd s t a nd a r d d e v i a t i on (s i gma) .
swi t c h (ngp i x) {
c a s e 0 : # no good p i x e l s

me a n = INDEF
s i gma = INDEF

c a s e 1 : # e x a c t l y on e good p i x e l
me a n = s um
s i gma = INDEF

d e f a u l t :
me a n = s um / ngp i x
t emp = s ums q / (ngp i x−1) − s um∗∗2 / (ngp i x ∗ (ngp i x−1))
i f (t emp < 0) # po s s i b l e wi t h r oundoff e r r o r

s i gma = 0 . 0
e l s e

s i gma = s q r t (t emp)
}

3.9. Procedure Declarations
Each procedure should be preceded by several blank lines and a block comment that gives

the name of the procedure and a short description of what the procedure does. If extensive
comments about the arguments or algorithm employed are required, they should be placed in the
prologue rather than in the procedure itself.

The prologue should be followed by one or two blank lines, then the procedure statement,
which should be left justified in column one. A blank line should follow, followed by the
declarations section, then another blank line, and lastly the body of the procedure, enclosed in
left justified begin ... end statements. The declarations should start in column one, and the list
of objects in each declaration should begin at the first tab stop. The body of the procedure
should be indented one full tab stop.

If the function of an argument, variable, or external function is not obvious or is not docu-
mented in the prologue, it should be declared alone on a line with an explanatory comment on
the same line. In general, well chosen identifiers are preferable to explanatory comments, which
tend to produce clutter, and which are more likely to be misleading or wrong. Arguments
should be declared first, followed by local variables and arrays, followed by function declara-
tions, with the errchk declaration, common block includes, string declarations, and data initial-
ization statements last.

Example 2

- 17 -

ADVANCE TO HELP BLOCK - - Se a r c h a fi l e f o r a h e l p b l o c k
(b l o c k o f t e x t p r e c e d e d by " . h e l p " l e f t j u s t i fie d on a
l i n e) . Upon e x i t , t h e l i n e buffe r wi l l c on t a i n t h e t e x t
f o r t h e h e l p s t a t eme n t , i f on e i s f ound . EOF i s r e t u r n e d
f o r a n un s u c c e s s f u l s e a r c h .

i n t p r o c e du r e a dv a n c e t o h e l p b l o c k (f d , l i n e buffe r)

i n t f d # fi l e t o b e s e a r c h e d
c h a r l i n e buffe r [SZ L INE]
i n t g e t l i n e () , s t rma t c h ()
e r r c hk g e t l i n e

b e g i n
wh i l e (g e t l i n e (f d , l i n e buffe r) ! = EOF)

i f (s t rma t c h (l i n e buffe r , " ^ . h e l p ") > 0)
r e t u r n (OK)

r e t u r n (EOF)
e nd

3.10. Statements
The format of both simple and compound statements is the same, except that the body of a

compound statement is enclosed in braces. The body or executable part of a statement should
begin on the second line of the statement, and should be indented one more level than the first
line. Each successive level should be indented four spaces more than the preceding level (every
other level is aligned on a tab stop). The opening left brace should be at the end of the first
line, and the closing right brace should be alone on a line (except in the case of else and until),
indented to the same level as the initial keyword.

3.10.1. Statement Templates
Templates are shown only for the compound form of each statement. To get the template

for the non-compound form, omit the braces and truncate the statement list to a single state-
ment. The iferr statement is syntactically equivalent to the if statement, and may be used wher-
ever an if could be used.

If a compound statement extends for many lines, the readability of the construct is often
enhanced by inserting one or more blank lines into the body of the compound statement. In the
case of a large if else, for example, a blank line (and possibly a comment) might be added
before the else clause. Similarly, blank lines could be inserted before an else if, a then, or a
case.

if (e xp r) {
< s t a t eme n t >
< s t a t eme n t >

}

- 18 -

iferr (s t a t eme n t) {
< s t a t eme n t >
< s t a t eme n t >

}

iferr {
< s t a t eme n t >
< s t a t eme n t >

} then {
< s t a t eme n t >
< s t a t eme n t >

}

if (e xp r) {
< s t a t eme n t >
< s t a t eme n t >

} else {
< s t a t eme n t >
< s t a t eme n t >

}

The else if construct should be used for general multiway branching, when the logical con-
ditions for selecting a particular branch are too complex to permit use of the switch case con-
struct.

if (e xp r) {
< s t a t eme n t >

} else if (e xp r) {
< s t a t eme n t >

} else if (e xp r) {
< s t a t eme n t >

}

The for statement is the most general looping construct. The do construct should be used
only to index arrays (i.e., for vector operations). The value of the index of the do loop is
undefined outside the body of the loop. The for statement should be used instead of the do if
the loop index is needed after termination of the loop. The repeat construct, without the
optional until, should be used for "infinite" loops (terminated by break, return, etc.).

for (i =1 ; i <= MAX; i = i +1) {
< s t a t eme n t >
< s t a t eme n t >

}

do i = 1 , np i x {
< s t a t eme n t >
< s t a t eme n t >

}

- 19 -

while (e xp r) {
< s t a t eme n t >
< s t a t eme n t >

}

repeat {
< s t a t eme n t >
< s t a t eme n t >

} until (e xp r)

The switch case construct is preferred to else if for a multiway branch, but the cases must
be integer constants. The cases should not be explicit or "magic" integer values; use symboli-
cally defined constants. Explicit character constants are permissible, but often it is best to
define character constants symbolically too. A number of common character constants are
defined in the system include file <chars.h>.

switch (e xp r) {
case ABC :

< s t a t eme n t >
case DEF , GHI , JKL :

< s t a t eme n t >
default :

< s t a t eme n t >
}

The printf statement is a compound statement, since the parg calls are logically bound to
the printf. Although braces are not used, the body of the statement should be indented one
level to make the connection clear. Printf statements must not be nested.

c a l l printf (f o rma t s t r i ng)
<p a r g s t a t eme n t >
<p a r g s t a t eme n t >

The null statement should be used whenever a statement is required by the syntax of the
language, but the problem does not require that a statement be executed. Null cases are often
added to switch statements to reserve cases, even though the code to be executed for the case
has not yet been implemented.

Example 3

Sk i p l e a d i ng wh i t e s p a c e .
f o r (i p=1 ; I S WHI TE (s t r [i p]) ; i p= i p+1)

;

3.11. Expressions
Whitespace should be distributed within an expression in a way which emphasizes the

major logical components of the expression. For simple expressions, this means that all binary
operators should be separated from their operands by blanks. In an argument list, a blank
should follow each comma. Keywords and important structural punctuation like the brace

- 20 -

should be separated from the neighboring left or right parenthesis by a blank. Complex expres-
sions are generally clearer if whitespace is omitted from the "inner" expressions.

Example 4:

a l ph a = b e t a + z e t a
a = (a + b) / (c ∗ d)
p = ((p−1) ∗ SZ DOUBLE) / SZ INT + 1
IM P IXF I LE (im) = op e n (fi l e n ame , READ ONLY, BINARY F I LE)
a [i , j] = ma x (mi nv a l , mi n (ma xv a l , a [i −1 , j]))

By convention, whitespace is omitted from all but the most complex array subscript
expressions, and the left square bracket is not separated from the array name by a blank. A
unary operator should not be separated from its operand by a blank.

The system include file <ctype.h> defines a set of macros which should be used in expres-
sions involving characters. For example, IS WHITE tests whether a character is a whitespace
character (see Example 3), IS DIGIT tests whether a character is a digit, and IS ALNUM tests
whether a character is alphanumeric.

3.12. Constants
Numerical constants should not be coded directly. The define feature of the SPP language

should be used to assign a meaningful name. This practice does much to enhance the readabil-
ity of code, and also makes large programs considerably easier to modify, since one need only
change the define. Defined constants which are referenced by more than one file should be
placed in an ".h" include file.

A number of numerical constants are predefined in the SPP language. A full list is given
in reference [5]. Some of the more commonly used of these global constants are shown below.
To save space, those constants pertaining to i/o (READ ONLY, TEXT FILE, STDIN,
STDOUT, etc.) are omitted, as are the type codes (TY INT, TY REAL, etc.), and the type sizes
(SZ INT, SZ REAL, etc.).

- 21 -

Selected Predefined Constants
constant datatype meaning

ARB i arbitrary dimension, i.e., "char lbuf[ARB]"
BOF, BOFL i,l beginning of file (use BOFL for seeks)
EOF, EOFL i,l end of file (use EOFL for seeks)
EOS i end of string
EPSILON r single precision machine epsilon
EPSILOND d double precision machine epsilon
ERR i error return code
INDEF r indefinite valued pixel
MAX EXPONENT i largest exponent
MAX INT i largest positive integer
MAX REAL r largest real number
NO i opposite of YES
NULL i invalid pointer, etc.
OK i opposite of ERR
SZB CHAR i size of a char, in machine bytes
SZ FNAME i maximum size of a file name string
SZ LINE i maximum size of a line of text
SZ PATHNAME i maximum size of an OS pathname
YES i opposite of NO

3.13. Naming Conventions
Keywords, variable names, and procedure and function names should be in lower case.

The names of macros and defined parameters should be in upper case. The prefix SZ, meaning
sizeof, should be used only to name objects which measure the size of an object in chars. Other
prefixes like LEN, N, or MAX should be used to name objects which describe the number of
elements in an array or set.

For example, the system wide predefined constant SZ LINE defines the maximum size of
a line of text, in units of chars, while SZ FNAME defines the maximum size of a file name
string, also in chars. Since space in structures is allocated in struct units rather than chars, the
constant defining the size of the FIO file descriptor structure is named LEN FIODES, not
SZ FIODES.

4. Portability Considerations
IRAF programs tend to be highly transportable, due to the machine and device indepen-

dent nature of the SPP language and the program interface libraries. Nonetheless, it is possible
(unintentionally or otherwise) to produce machine or device dependent programs. A detailed
discussion of the most probable trouble areas follows. The programmer should be aware of
these pitfalls, but highly transportable programs can be produced merely by applying the follow-
ing simple guidelines: (1) choose the simplest, not the cleverest solution, (2) write modular, well
structured programs, and (3) use the standard interfaces.

4.1. keep it simple
Simple, modular programs, structured according to the guidelines in §3.1, are easy to

understand and modify. Even the best programs are unlikely to be completely portable, because
they will only have been tested and debugged on one or two systems by their author. Therefore
the transportability of a program is significantly increased if it easy for someone who is unfami-
liar with the code to quickly find and fix any machine dependencies. A package of verification
routines are extremely useful when testing software on a new system, and ideally should be

- 22 -

supplied with each package, along with sample output.

4.2. use the standard interfaces
Much care has gone into making the standard interfaces as machine and device indepen-

dent as possible. By using the standard interfaces in a straightforward, conventional fashion,
one can concentrate on solving the immediate problem with confidence that a highly transport-
able and device independent program will automatically result.

The surest way to produce a machine or device dependent program is to bypass an inter-
face. This fact is fairly obvious, but it is not always easy to tell when an interface is being
bypassed (see §3.3 for examples). Furthermore, by bypassing an interface, one may be able to
provide some feature that would be difficult or impossible to provide using the standard inter-
faces. In some cases this may be justified (provided transportability is not a requirement), but
often the feature is cosmetic, and does not significantly increase the functionality of the pro-
gram. The correct procedure is to request that the interface causing the problem be extended or
refined.

4.3. avoid machine dependent filenames
Machine dependent filenames should not appear in source files. Files which are referenced

at compile time, such as include files, should be placed either in the package directory or in the
system library directory, to eliminate the need to use a pathname. Program files accessed at
runtime must be referenced with a pathname, since the runtime current working directory is
unpredictable. In this case a VFN should be used. The logical directory for the VFN should be
defined in the package script task.

4.4. isolate those portions of a program which perform i/o
This fundamental principle is especially important when one attempts to transport an

applications program from one reduction and analysis system to another, since the interfaces
will almost certainly be quite different in the two systems. Encapsulating that part of the pro-
gram which does i/o reduces the amount of code which must be understood and changed to
bring up the package on the new system.

4.5. keep memory requirements to a reasonable level
Not all machines have large address spaces, nor do all machines have virtual memory.

Virtual memory seems simple, but it is not; to use it effectively one must know quite a bit about
how virtual memory is implemented by the local OS, and implementations of virtual memory
by different operating systems differ considerably in their characteristics and capabilities. Using
virtual memory effectively is not just a matter of accessing large arrays in storage order. If one
can do that, then there is little justification for writing a program which is dependent on virtual
memory.

It is possible to write down a set of guidelines for using virtual memory effectively and in
a reasonably transportable manner, if one considers only large virtual memory machines. These
guidelines are complex, however, and such a discussion is beyond the scope of this document.
It must be recognized that any dependence on virtual memory seriously restricts the transporta-
bility of a program, and the use of virtual memory should only be considered if the problem
warrants it.

The best approach for most applications is to restrict the memory requirements of a pro-
gram to the amount of per-process physical memory which one can reasonably expect to be
available on a modern supermini or supermicro. An upper limit of one quarter of a megabyte is
recommended for most programs. Programs which need all the memory they can get, but which
can dynamically adjust their buffer space to use whatever is available, should use the begmem
system call to determine how much memory is available in a system independent way.

- 23 -

4.6. make sure argument and function datatypes match
Compilers for the SPP and Fortran languages do not verify that a function is declared

correctly, or that a procedure or function is called with the correct number and type of argu-
ments. This seriously compromises the transportability of programs, because whether or not a
type mismatch causes a program to fail depends on the machine architecture. Thus, a program
may work perfectly well on the software development machine, but that does not indicate that
the program is correct.

The most dangerous example of this is a procedure which expects an argument of type
short or char. If passed an actual argument of type integer, as happens when the actual argu-
ment is an integer constant (i.e., NULL, 1, (’a’+10), etc.), we have a type mismatch since the
corresponding Fortran dummy argument is (usually) declared as INTEGER∗2, while the actual
argument is of type INTEGER. Whether or not the program will work on a particular machine
depends on how the machine arranges the bytes in an integer. Thus, the mismatch will go
undetected on a VAX but the program will fail on an IBM machine.

A similar problem occurs when a boolean dummy argument or function is declared as an
integer in the calling program, and vice versa. In this case, whether or not the program works
depends on what integer values the compiler uses to represent the boolean constants true and
false. The danger is particularly great if the compiler happens to use the constants one and zero
for true and false, since the integer constants YES and NO are equivalent in value and similar in
function.

The technique used by the Fortran compiler to implement subroutine and function calls
determines whether or not calling a function as a subroutine, or calling a subprogram with the
wrong number of arguments will cause a program to fail. For example, if the arguments to a
subroutine are placed on the hardware stack during a subroutine call, as is done by compilers
which permit recursive calls, then most likely the stack will not be popped correctly upon exit
from the subroutine, and the program will fail. On a machine which statically allocates storage
for argument lists, the problem may go undetected.

4.7. do not use output arguments as local variables
This section is not directly relevant to the issue of portability, but is included nonetheless

because the topic presented here is logically related to that discussed in the previous section.

The output or status arguments of a procedure should be regarded as write-only. Output
arguments should not be used as local variables, i.e., should not appear in expressions. Like-
wise, the function value of a typed procedure should not be used as a local variable.

To see why this is important, consider a procedure alpha with input arguments A and B,
and output arguments C and D:

procedure alpha (a, b, c, d)

The calling program may not be interested in the return values C and D, and may therefore call
alpha as follows:

call alpha (a, b, junk, junk)

Since the SPP language passes arguments by reference, this call maps the two dummy argu-
ments C and D to the same physical storage location. If C and D are used as distinct local vari-
ables within alpha (presumably in an effort to save storage), a subtle computation error will
almost certainly result, which may be quite difficult to diagnose.

4.8. avoid assumptions about the machine precision
The variation of numeric precision amongst machines by different manufacturers is a well

known problem affecting the portability of software. This problem is especially important in
numeric software, where the accumulation of errors may be critically important. The SPP
language addresses the problem of machine precision by providing both single and double

- 24 -

precision integer and floating point data types, and by defining a minimum precision for each.

To produce a transportable program, one must select datatypes based on the minimum pre-
cisions given in the table below. The actual precision provided by the software development
machine may greatly exceed these values, but a program must not take advantage of such excess
precision if it is to be transportable. In particular, a long integer should be used whenever a
high precision integer is required, and care should be taken to avoid large floating point
exponents.

Minimum Precision of Selected SPP Datatypes
datatype precision

char +/- 127 (8 bit signed)
short +/- 32767 (16 bit signed)
int +/- 32767 (16 bit signed)
long +/- 2147483647 (32 bit signed)
real 6 decimal digits, exponent +/- 38
double 14 decimal digits, exponent +/- 38

4.9. do not compare floating point numbers for equality
In general, it is very difficult to reliably compare floating point numbers for equality. The

result of such a comparison is not only machine dependent, it is context dependent as well. The
only possible exception is when numbers are compared which have only been copied in an
assignment statement, without any form of type coercion or other transformations.

r e a l x

b e g i n
x = 1 . 0D10
i f (x == 1 . 0D10)

. . .
e nd

The code fragment shown above, simple though it is, is machine dependent because the
double precision constant has been coerced to type real and back to double by the time the com-
parison takes place. Comparisons of just this sort are possible in IRAF programs which flag
bad pixels with the magic value INDEF. Avoid type coercion of indefinites; use INDEF or
INDEFR only for type real pixels, INDEFD for type double pixels, and so on.

Occasionally it is necessary to determine if two floating point numbers are equivalent to
within the machine precision. The predefined machine dependent constants EPSILON and
EPSILOND are provided in the SPP language to facilitate such comparisons. The two single
precision floating point numbers x and y are said to be equivalent to within the machine preci-
sion, provided the quantities x and y are normalized to the range one to ten prior to com-
parison, if the following relation holds:

abs (x − y) < EPSILON

4.10. use the standard predefined machine constants
A number of obviously machine dependent constants are predefined in the SPP language.

These include such commonly used values as EPSILON, INDEF, SZB CHAR, and so on.
Other less commonly used machine constants, such as the maximum number of open files
(LAST FD), are defined in the system include file <config.h>. Device dependent parameters

- 25 -

such as the block or sector size for a disk device are not necessarily unique within a system, and
are therefore not predefined constants. A run time call is required to obtain the value of such
device dependent parameters.

A complete list of the standard predefined machine dependent constants is shown below.
Some of these are difficult to use in a transportable fashion. The transportability of a program is
greatest when no machine dependent parameters are used, be they formally parameterized or
not.

Machine Dependent Constants
name datatype meaning

BYTE SWAP i swap magtape bytes?
EPSILON r single precision machine epsilon
EPSILOND d double precision machine epsilon
INDEF r indefinite pixel of type real
INDEFt t indefinite valued pixels
MAX DIGITS i max digits in a number
MAX EXPONENT i largest floating point exponent
MAX INT i largest positive integer
MAX LONG l largest positive long integer
MAX REAL r largest floating point number
MAX SHORT i largest short integer
NBITS INT i number of bits in an integer
NBITS SHORT i number of bits in a short integer
NDIGITS DP i number of digits of precision (double)
NDIGITS RP i number of digits of real precision
SZB ADDR i machine bytes per address increment
SZB CHAR i machine bytes per char
SZ FNAME i max chars in a file name
SZ LINE i max chars in a line
SZ PATHNAME i max chars in OS dependent file names
SZ VMPAGE i page size, chars (1 if no virtual mem.)
SZ type i sizes of the primitive types
WORD SWAP i swap magtape words?

4.11. explicitly initialize variables
Storage is statically allocated for all local and global variables in the SPP language.

Unless explicitly initialized, the initial value of a variable is undefined. Although many com-
pilers implicitly initialize variables with the value zero, this fact is quite machine dependent and
should not be depended upon. Local variables should be explicitly initialized in an assignment
or data statement before use.

Global variables (in common blocks) cannot be initialized with the data statement. Some
compilers permit such initialization, but this feature is again quite machine dependent, and
should not be depended upon. Global variables must be initialized by a run time initialization
procedure.

4.12. beware of functions with side effects
The order of evaluation of an expression is not defined. In particular, the compiler may

evaluate the components of a boolean expression in any order, and parts of a boolean expression
may not be evaluated at all if the value of the expression can be determined by what has already
been evaluated. This fact can cause subtle, potentially machine dependent problems when a
boolean expression calls a function with side effects. To see why this is a problem, consider the

- 26 -

following example:

i f (fla g | | g e t c (f d , c h) == EOF)
. . .

The function getc used in the example above has two side effects: it sets the value of the
external variable ch, and it advances the i/o pointer for file fd by one character. If the value of
flag in the if statement is true, the value of the boolean expression is necessarily true, and the
compiler is permitted to generate code which would skip the call to getc. Whether or not getc
gets called during the evaluation of this expression depends on how clever the compiler is
(which cannot be predicted), and on the run-time value of the variable flag.

4.13. use of intrinsic functions
The intrinsic functions are generic functions, meaning that the same function name may be

used regardless of the datatype of the arguments. Unlike ordinary external functions and local
variables, intrinsic functions should not be declared. Not all compilers ignore intrinsic function
declarations.

Only the intrinsic functions shown in the table below should be used in SPP programs.
Although current compilers for the SPP language will accept many Fortran intrinsic functions
other than those shown, the use of such functions is nonstandard, and will not be supported by
future compilers.

Standard SPP Intrinsic Functions
abs atan conjg exp long nint sinh
acos atan2 cos int max real sqrt
aimag char cosh log min short tan
asin complex double log10 mod sin tanh

Note that the names of the type coercion functions (char, short, int, real, etc.) are the
same as the names of the datatypes in declarations. The functions log10, tan, and the hyper-
bolic functions, may not be called with complex arguments.

4.14. explicitly align objects in global common
Care should be taken to align objects in common blocks on word boundaries. Since the

size of a word is machine dependent, this is not always easy to do. Common blocks which con-
tain only objects of type integer and real are the most portable. Avoid booleans in common
blocks; use integer variables with the values YES and NO instead. Objects of type char and
short should be grouped together, preferably at the end of the common block, with the total size
of the group being an even number. Remember that the SPP compiler allocates one extra char-
acter of storage for character arrays; character arrays should therefore be odd-dimensioned.

5. Software Documentation
Even the best software system is of no value unless people use it. Given several software

packages of roughly similar capabilities, people are most likely to use the package which is
easiest to understand, i.e., which has the simplest interface, and which is best documented.
Documentation is perhaps the single most important part of the user interface to a system, and
to a large extent the quality of the documentation for a system will determine what judgment
people make of the quality of the system itself.

The documentation associated with a large software system (or applications package) can
be classed as either user documentation or system documentation. User documentation
describes the function of the modules making up the system, without reference to the details of

- 27 -

how the modules are implemented. System documentation includes design documentation,
documentation describing the details of how the software is implemented, and documentation
describing how to install and test the system.

5.1. User Documentation
The first contact a user has with a system is usually provided by the user documentation

for the system. Good user documentation should provide an accurate and concise introduction
to the system; it should not emphasize the glamorous system features or otherwise try to "sell"
the system. It should not be necessary for the user to read all the documentation to be able to
make simple use of the system. The documentation should be structured in such a way that the
user may read it to the level of detail appropriate to his or her needs. Good user documentation
is characterized by its conciseness and clarity, not by the sheer volume of documentation pro-
vided.

In what follows, we use the terms "system", "subsystem", and "package" interchangeably.
The term "function" refers both to CL callable tasks and to library procedures. The term "user"
refers both to end users and to programmers, depending on the nature of the system or package
to be documented. The term "document" need not refer to separately bound documents;
whether separate documents or multiple sections within a single document are produced depends
upon the size of the system and upon the number of authors.

The user documentation for a large system or package should consist of at least the fol-
lowing documents:

(1) The User’s Guide, which introduces the user to the system, and provides a good
overall summary of the facilities provided by the system. This document should pro-
vide just enough information to tell the first time user how to exercise the most com-
monly used functions. Great care should be taken to produce a highly readable
document, minimizing technical jargon without sacrificing clarity and conciseness.
Plenty of figures, tables, and examples should be included to enhance readability.

(2) The Reference Manual, which describes in detail the facilities available to the user,
and how to use these facilities. The reference manual is the definitive document for
the system. It should be complete and accurate; technical terms and formal notations
may be used for maximum precision and clarity. The reference manual defines the
user interface to the system; implementation details do not belong here.

The minimum reference manual consists of a set of so-called manual pages, each of
which describes in detail one of the functions provided by the system. The manual pages
should be available both on-line and in printed form. The printed reference manual should con-
tain any additional information which pertains to more than one function, and which therefore
does not belong in a manual page, but which is too technical or detailed for the user’s guide.

Other user documentation might include a report of the results of any tests of the system,
as when an a scientific analysis package is tested with artificial data. An objective evaluation of
strengths and shortcomings of the algorithms used by the package might be useful. It is impor-
tant that both the user and the implementor understand the limitations of the software, and its
intended range of application.

5.2. System Documentation
System documentation is required to produce, maintain, test, and install software systems.

The main requirement for system documentation is that it be accurate; it need not be especially
well written, is usually quite technical, and need not be carefully typeset nor printed. The sys-
tem documentation for a package should be maintained in files in the source directories for the
package which it describes.

The system documentation for a large system or package should include the following
documents:

- 28 -

(1) The requirements for the system.

(2) The detailed technical specifications for the system.

(3) For each program in the system, a description of how that program is decomposed
into modules (i.e., a structure chart), and the function of each module.

(4) Implementation details, including descriptions of the major data structures and
details of their usage, descriptions of complicated algorithms, important strategies
and design decisions, and notes on any code that might be hard for another program-
mer to understand. This need not extend to describing program actions which are
already documented using comments in the code.

(5) A test plan, describing what verification software is available, how to use it, and how
to interpret the results. The amount of documentation required should be minimized
by automating the verification software as much as possible.

(6) Instructions on how to install the system when it is ported to a new computer. List
any include files which may need to be edited, directories required by the system
which may have to be created, libraries or other program modules external to the
package which are required, and any file or device names which may have to be
changed. A description of how to compile each program should be included; a
UNIX Makefile for the package would be ideal.

(7) A revision history for the software, giving the names of the original authors, the
dates of the first release and of all subsequent revisions, and a summary of the
changes made in each release of the system. Any bugs, restrictions, or planned
improvements should be noted.

These documents are listed more or less in the order in which they would be produced.
The requirements and specifications of a system are written during the preliminary design phase.
Documentation describing the decomposition of programs into modules, and detailing the data
structures and algorithms used by the package is written during the detailed design stage. After
the code has been written and tested, additional notes on the details of the implementation
should be made, and the original design documentation should be brought up to date. The
remaining documentation should be produced after implementation, before the package is first
released.

5.3. Documentation Standards
All documentation should be maintained in computer readable form on the software

development machine. The standard text processing software for IRAF user documentation is
the UNIX Troff text formatter, used with the ms macros, the Tbl table preprocessor, the Eqn
preprocessor for mathematical graphics, and so on. Associated utilities such as Spell and Dic-
tion are useful for detecting spelling errors and bad grammatical constructs. User documenta-
tion will be typeset and reproduced in quantity by the KPNO print shop.

The standard text processing software for all on-line manual pages and system documenta-
tion is the Lroff text formatter, a portable IRAF system utility. The UNIX utilities cannot be
used for on-line documentation, and should not be used for system documentation because it is
difficult to justify the expense of typesetting system documentation, and because system docu-
mentation is not maintained in printed form, and many users will not have access to the UNIX
text processing tools. The Lroff text processor is more than adequate for most system documen-
tation.

The format of user documentation should be similar to that used in this document, i.e.:

(1) The title page should come first, consisting of the title, the names of the authors and
of their home institutions, an abstract summarizing the contents of the document, and
the date of the first release of the document, and of the current revision.

- 29 -

(2) A table of contents for the document should be given next, except possibly in the
case of very small documents.

(3) Next should come the introduction, followed by the body of the document, organized
into sections numbered as in this document.

(4) Any references, appendices, large examples, or the index or glossary if any, should
be given last.

Lroff and Troff format source files should have the extensions ".hlp" and ".ms", respec-
tively. All documentation for a package should be maintained in the source directories for the
package, to ensure that the documentation gets distributed with the package, does not get lost,
can easily be found, and to make it easier for the programmer to keep the documentation up to
date.

5.4. Technical Writing
Technical writing is a craft comparable in difficulty to computer programming. Writing

good documentation is not easy, nor is it a single stage process. Documents must be designed,
written, read, criticized, and then rewritten until a satisfactory document is produced. The pro-
cess has much in common with programming; first one should establish the requirements or
scope of the document, then one should prepare an initial outline (design), which is successively
refined until it is detailed enough to fully define the contents of the final document. Writing
should not begin until one has structured the document into a hierarchy of sections, each of
which is well named, and each of which documents a single topic.

English is not a formal language, like a computer language, and it is accordingly very
difficult to define a standard style for technical prose. A discussion of writing style in general is
given in the excellent little book by Strunk and White [14]. Technical writing differs from other
writing in that the material should be clearly and logically organized into sections, and graphics,
i.e., lists, tables, figures, examples, etc., should be liberally used to present the material. Large,
monolithic paragraphs, or entire pages containing only paragraphs of text, appear forbidding to
the reader and should be avoided.

The following guidelines for writing style in technical documents are reproduced from
reference [8], Software Engineering by I. Sommerville:

(1) Use active rather than passive tenses when writing instruction manuals.

(2) Do not use long sentences which present a number of different facts. It is much
better to use a number of shorter sentences.

(3) Do not refer to previously presented information by some reference number on its
own. Instead, give the reference number and remind the reader what the reference
covered.

(4) Itemize facts wherever possible rather than present them in the form of a sentence.

(5) If a description is complex, repeat yourself, presenting two or more differently
phrased descriptions of the same thing. If the reader fails to completely understand
one description, he may benefit from having the same thing said in a different way.

(6) Don’t be verbose. If you can say something in 5 words do so, rather than use ten
words so that the description might seem more profound. There is no merit in quan-
tity of documentation — quality is much more important.

(7) Be precise and, if necessary, define the terms which you use. Computing terminol-
ogy is very fluid and many terms have more than one meaning. Therefore, if such
terms (such as module or process) are used, make sure that your definition is clear.

(8) Keep paragraphs short. As a general rule, no paragraph should be made up of more
than seven sentences. This is because of short term memory limitations. [Another
general rule is that few paragraphs should be longer than seven or eight lines on an
81/2 by 11 inch page.]

- 30 -

(9) Make use of headings and subheadings. Always ensure that a consistent numbering
convention is used for these.

(10) Use grammatically correct constructs and spell words correctly. Avoid constructs
such as split infinitives.

Technical writing should not be regarded as a chore. The process is difficult and challeng-
ing, and can be quite rewarding. Often the act of writing results in new insight for the writer.
Writing is a form of judgment; if an idea or design cannot be explained clearly, there is prob-
ably something wrong with it. Writing forces one to consider an issue in detail, and often is the
source of new ideas. A software system cannot be widely used until it is documented, and the
quality of the documentation will do much to ensure the success of the system itself.

References

1. D. C. Wells and E. W. Greisen, FITS — A Flexible Image Transport System, Proceedings of the
International Workshop on Image Processing in Astronomy, Ed. G.Sedmak, M.Capaccioli,
R.J.Allen, Osservatorio Astronomico di Trieste, 1979.

2. E. Allman and M. Stonebreaker, "Observations on the Evolution of a Software System", Computer,
June 1982.

3. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice - Hall, Inc., Engle-
wood Cliffs, New Jersey, 1978.

4. H. Spencer et al., Indian Hill C Style and Coding Standards as amended for U of T Zoology UNIX.
An annotated version of the original Indian Hill (Bell Labs) style manual for the C language.

5. D. Tody, A Reference Manual for the IRAF Subset Preprocessor Language, KNPO, January 1983.

6. American National Standards Institute, Inc., American National Standard Programming Language
Fortran, document number ANSI X3.9-1978, April 1978.

7. J. Larmouth, Fortran 77 Portability, Software — Practice and Experience, Vol. 11, 1071-1117
(1981).

8. I. Sommerville, Software Engineering, Addison-Wesley, 1982.

9. W. P. Stevens, Using Structured Design, John Wiley & Sons, Inc., 1981.

10. J. D. Aron, The Program Development Process; Part II, The Programming Team, Addison-Wesley,
1983.

11. W. S. Davis, Tools and Techniques for Structured Systems Analysis and Design, Addison-Wesley,
1983.

12. B. Meyer, "Principles of Package Design", Communications of the ACM, July 1982, Vol. 25, No. 7.

13. G. D. Bergland, "A Guided Tour of Program Design Methodologies," Computer, October 1981.
14. W. Strunk Jr. and E. B. White, The Elements of Style, Mcmillan Publishing Co., Inc., 1979 (third

edition).

- 31 -

Standard Nomenclature

AAS
The American Astronomical Society.

C
C is a powerful modern language for both systems and general programming. C provides
data structuring, recursion, automatic storage, a fairly standard set of control constructs, a
rich set of operators, and considerable conciseness of expression. Developed by Ken
Thompson and Dennis Ritchie at Bell Labs in the early 1970’s, C is the language used to
implement the kernel of the UNIX operating system, as well as the standard UNIX utili-
ties.

CL
The IRAF Command Language. The CL is an interpreted language designed to execute
external tasks, and to manage their parameters. The CL organizes tasks into a hierarchi-
cal structure of independent packages. Tasks may be either script tasks, written in the
CL, or compiled programs, written in the SPP language, and linked together to form
processes. A single process may contain an arbitrary number of tasks.

The CL is itself both a task and a process. The CL process runs concurrently with the
subtasks which it executes. The CL process and the process containing the subtask being
executed communicate dynamically via interprocess communication, providing both a
highly interactive mode of execution, as well as a batch mode.

The CL provides redirection of all i/o streams, including graphics output and cursor read-
back. Other facilities include menus, command logging, parameter prompting, an online
help facility, a "programmable desk calculator" capability, and a learn mode. New pack-
ages and tasks are easily added by the user, and the CL environment is maintained in the
user’s own directories, providing continuity from session to session.

CLIO
CL I/O. A package of SPP callable library routines, used to communicate with the CL.

FIO
File I/O. A package of SPP callable library routines, used to access files.

FITS
A "Flexible Image Transport System". FITS is a standard data format used to transport
images (pictures) between computers and institutions. Developed in the late 1970s by
Donald Wells (KPNO) and Eric Greisen (NRAO), the FITS standard is now widely used
for the interchange of image data between astronomical centers, and is officially sanctioned
by both the AAS and the IAU.

FMTIO
Formatted I/O. A package of SPP callable library routines, used to perform formatted i/o
(decoding and encoding of character strings).

Fortran
As the most widely used language for scientific computing for the past twenty years, For-
tran needs no introduction. Fortran is used in the IRAF system as a sort of "super assem-
bler" language. Programs and procedures written in the IRAF SPP language are mechani-
cally translated into a highly portable subset of Fortran, and the Fortran modules are in

- 32 -

turn translated into object modules by the host resident Fortran compiler. Existing numer-
ical and other modules, already coded in the Fortran language, are easily linked with
modules written in the SPP language to produce executable programs. The IRAF system
and applications software does not use any Fortran i/o; all i/o facilities are provided by the
IRAF program interface and virtual operating system.

GIO
Graphics I/O. A package of SPP callable library routines, used to interface to graphics
and grayscale devices.

IAU
The International Astronomical Union.

IMIO
Image I/O. A package of SPP callable library routines, used to access imagefiles (bulk
data arrays).

IRAF
The IRAF or "Image Reduction and Analysis Facility", consists of a virtual operating sys-
tem, a command language, a general purpose programming language (which was
developed especially for IRAF), a large i/o library, a numerical library, and numerous sup-
port utilities and scientific applications programs. The system is designed to be transport-
able to any modern superminicomputer. When completed, the system will provide exten-
sive facilities for general image processing, astronomical data reduction and analysis,
scientific programming, and general software development.

Lroff
The Lroff text formatter is part of the portable IRAF system. The online help facilities
use Lroff, and hence manual pages and other online documentation must be maintained in
Lroff form. The Lroff text formatter is patterned after the UNIX Troff text formatter.

MTIO
Magnetic Tape I/O. A package of SPP callable library routines, used to read and write
magnetic tapes.

Make
Make is a UNIX utility program, used to compile and link (make) programs. Make takes
as input a human readable Makefile which describes the interdependencies of the modules
in the package, as well as giving exact instructions for making each module. When mak-
ing a target module, Make recompiles only those modules which have been changed since
the target was last made. A simple command like "make all" usually suffices to make all
of the modules in a package.

Make is most useful on UNIX systems. Even on non-UNIX systems, however, the
makefile for the package is useful documentation, for it describes precisely how to make
each module in the package.

Mklib
Mklib is a UNIX dependent utility developed for IRAF. Mklib is analogous to Make,
except that Mklib is used to maintain libraries. Mklib checks each module in a library to
see if it is up to date, and if not, recompiles the module and installs the new object module
in the library. Mklib is used by the IRAF Sysgen utility to automatically update the IRAF
system (consisting of four libraries containing several hundred modules).

- 33 -

OS
(1) An acronym for the term "operating system". (2) The OS interface package, which
contains the machine dependent routines required to interface the portable IRAF i/o pack-
ages to the local operating system.

OSFN
An acronym for the term "OS dependent file name".

SPP
The IRAF Subset Preprocessor Language (SPP), implements a subset of the full language
scheduled for development in 1984. The SPP language is a general purpose language, pat-
terned after Ratfor and C. The language provides advanced capabilities, modern control
constructs, enhanced portability, and support for the IRAF runtime library (CL interface,
etc.).

Troff
Troff is the UNIX text formatter. In IRAF documentation, Troff is always used in con-
junction with the "ms" macro package.

UNIX
An operating system developed at Bell Labs in the early 1970s by Ken Thompson and
Dennis ritchie. Though originally developed for the PDP11, UNIX is now available on a
wide range of machines, ranging from micros to superminis and mainframes. UNIX is the
software development system for the IRAF project.

VFN
An acronym for the term "virtual file name". A virtual file name is a machine independent
filename of the form "ldir$root.extn".

VMS
The native operating system for Digital Equipment Corporation’s VAX series of supermini
computers.

VOPS
The "vector operators" package, a package of SPP callable library routines providing a
wide class of vector pseudo-instructions. The VOPS routines are written in the SPP
language, but may be optimized in assembler or interfaced directly to an array processor,
depending upon the implementation.

band
The Nth band of a three dimensional array or image is denoted by the subscript [∗,∗,N],
where ∗ refers to all the pixels in that dimension. A band is a two dimensional array.

binary file
A binary file is an array or sequence of chars, where the term char defines a unit of
storage, and implies nothing about the contents of the file. Data is transferred between a
binary file and a buffer in the calling program by a simple copy operation, without any
form of conversion. Binary files are created, deleted, and accessed via the routines in the
FIO interface. Barring device restrictions, binary files may be accessed at random, and
extended indefinitely. Almost any device may be accessed as a binary file via FIO.

- 34 -

binary operator
An operator which combines two operands to produce a single result (i.e., the addition
operator in "x + y").

brace
The left and right braces are the characters "{" and "}". Braces are used in the CL and in
the SPP language to group statements to form a compound statement.

bracket
The left and right square brackets are the characters "[" and "]". Brackets are used in the
SPP language to form array subscripts.

byte
The byte is the smallest unit of storage on the host machine. The IRAF system assumes
that there are an integral number of bytes in a char and in an address increment (and
therefore that the byte is not larger than either). On most modern computers, a byte is 8
bits, and a char is 16 bits (INTEGER∗2). If the address increment is one byte, the
machine is said to be byte addressable. Other machines are word addressable, where
one word of memory contains two or more bytes. In the SPP language, SZB CHAR
gives the number of bytes per char, and SZB ADDR gives the number of bytes per
address increment.

char
The char is the smallest signed integer which can be directly addressed by programs writ-
ten in the SPP language. The char is also the unit of storage in IRAF programs: the sizes
of objects are given in units of chars, and binary files and memory are addressed in units
of chars. Since the SPP language interfaces to the machine via the local Fortran compiler,
the Fortran compiler determines the size of a char. On most systems, the datatype char is
equivalent to the (nonstandard) Fortran datatype INTEGER∗2.

column
The Nth column vector of a two dimensional array or image is denoted by the subscript
[N,∗], where ∗ refers to all the pixels in that dimension. The Nth column of the Mth band
of a three dimensional array or image is denoted by [N,∗,M].

compiler
A compiler for a language X is a program which translates a source module written in the
language X into an object module. A linker subsequently combines a number of object
modules to produce an executable process.

coupling
Coupling measures the strength of relationships between modules. The independence of
modules is maximized when coupling in minimized. A change in one module is least
likely to require a change in another module when the two modules are minimally cou-
pled.

data structure
A data structure is an aggregate of two or more data elements. Examples include arrays,
descriptors, files, records, linked lists, trees, graphs, and so on.

- 35 -

database management
Database management is a branch of computing science concerned with techniques for
implementing, maintaining, and accessing databases. Databases may be used to store arbi-
trarily complex data objects. A database is self describing and self contained. Access to a
database typically occurs only through well defined interfaces, which ideally provide a
high degree of data independence (the external world knows no more than needed about
the contents of the database, or how data is stored in the database).

Applications programs communicate with one another via records passed through the data-
base, as well as save final results in the database. A general purpose query language can
be used to inspect and manipulate the contents of a database.

datafile
A datafile is a database storage file. Datafiles are used to store program generated records
or descriptors, containing the results of the analysis performed by a program. Datafile
records may be the final output of a program, or may be used as input to a program.

field
A field is an element of a structure or record. Each field has a name, a datatype, and a
value.

function
A function is a procedure which returns a value. Functions must be declared before they
can be used, and functions must only be used in expressions. It is illegal to call a func-
tion.

header file
A header file is a file (extension ".h") containing only defined constants, structure
definitions, macro definitions, or comments. Header files are included in other files by
referencing them in include statements, and are not directly compiled.

identifier
An identifier is a sequence of characters used to name a procedure, variable, etc. in a com-
piled language. In the SPP language, an identifier is an upper or lower case letter, fol-
lowed by any number (including zero) of upper or lower case letters, digits, or instances of
the underscore character.

image
An array of arbitrary dimension and datatype, used for bulk data storage. An image is an
array of pixels.

imagefile
The form in which images are implemented in the IRAF system. The IRAF currently sup-
ports images of up to seven dimensions, in any of eight different datatypes. Only line
storage mode is currently available. The "imagefile" structure is actually implemented as
two separate files, the image header file and the pixel storage file.

include file
An "include <include file name>" statement in the SPP language is replaced during com-
pilation by the contents of the named include file (the contents of the include file are
inserted into the input stream).

- 36 -

interface
The interface to a module is defined by the external specifications of the module. The
actual interface to a module is everything that is known about the module by other
modules in the system. The interface to a subroutine library, for example, is defined by
the manual pages, reference manuals, and other formal documentation for the library.

line
The Nth line of a two dimensional array or image is denoted by the subscript [∗,N], where
∗ refers to all the pixels in that dimension. The Nth line of the Mth band of a three
dimensional array or image is denoted by [∗,N,M].

list file
A list file is a text file, each line of which is a record containing one or more fields. Each
record in the list has the same format, though not all fields need be present (fields can only
be omitted from right to left).

macro
A macro, or inline function, is a function with zero or more arguments, which is
expanded by text substitution during the preprocessing phase of compilation.

newline
The newline character (’\n’) delimits each line of text read by the FIO input procedures. If
a text file is read character by character, a single newline character marks the end of each
line, and the special character EOF marks the end of the file. Newline is logically
equivalent to a carriage return followed by a line feed.

operand
An operand is a data object which is operated upon by an operator, procedure, or task.
Operands may be either input or output, or both.

package
A package is a set of modules which operate on a specific abstract datatype. The
modules in a package may be either procedures or tasks. Examples of abstract datatypes
include the CL, the file, the imagefile, and so on. Some packages are merely collections
of modules which are logically related (i.e., the class of system utilities).

parameter
An externaly supplied argument to a module which directly controls the functioning of the
module.

pathname
An absolute OS dependent filename specification, i.e, a filename which is not an offset
from the current directory.

pixel
The fundamental unit of storage in an image; a picture element. An image is an array of
pixels.

- 37 -

pointer
A pointer is a datum which defines the coordinates of an object in some logical coordinate
system. To use a pointer, one must know what type of object the pointer points to, and
what coordinate system the pointer references.

portable
A program is said to be portable from computer A to computer B if it can be moved from
A to B without change. A program is said to be transportable from computer A to com-
puter B if the effort required to move the program from A to B is much less than the effort
required to write an equivalent program on machine B from scratch.

preprocessor
A preprocessor is a program which transforms the text of a source file prior to compila-
tion. A preprocessor, unlike a compiler, does not fully define a language. A preprocessor
transforms only those constructs which it understands; all other text is passed on to the
compiler without change.

procedure
A separately compiled program unit. The procedure is the main construct provided by
languages for the abstraction of function. The external characteristics of a procedure are
its name, argument list, and optional return value.

process
An executable partition of memory in the host computer. The host OS initiates a process
by copying or mapping an executable file into main memory. In a multitasking, multiuser
system, a number of processes will in general be simultaneously resident in main memory,
and the processor will execute each in turn, performing many context switches each
second with the result that all processes appear to be executing simultaneously.

program
A program is a compiled procedure which is called by the CL, via the CL interface. The
procedure must be referenced in a task statement before it can be accessed by the CL, and
must not have any formal arguments. A program communicates with the CL via CLIO.
An arbitrary number of programs may be linked to form a single process.

program interface
The interface between an applications program and the outside world. The program inter-
face is subdivided into a number of packages, each of which has a well defined interface
of its own. The specifications of the program interface are summarized in the program
interface crib sheet.

record
A record is data structure consisting of an arbitrary set of fields, used to pass information
between program modules, or to permanently record the results of an analysis program in
a database. Often, records are organized into arrays, where each record contains the
results of the analysis of a particular object.

script task
An interpreted program written in the command language. A script task, like a compiled
program, may have formal parameters and local variables. A script task may call another
task, including another script task, but may not call itself. To the caller, script tasks and
compiled programs are equivalent.

- 38 -

specifications
A detailed description of a software system or subsystem, concentrating on the external
attributes of the software rather than the on the implementation. Requirements are simi-
lar to specifications, but are usually more formal and less detailed. The specifications for
a subsystem define the interface to the subsystem, and when written in an informal style
may resemble a reference manual.

system interface
The interface between the portable IRAF software and the host operating system. The sys-
tem interface is a virtual operating system. The system interface routines, maintained in
the "OS" package, are in principle the only part of a system that needs to be changed when
porting the system to a new computer.

task
A CL callable program unit. CL tasks may be script tasks, external programs, or compiled
procedures which are built in to the CL.

task statement
(1) The task statement in the SPP language defines a list of programs to be linked together
to form a single process. (2) The CL task statement enters the name of a task in the dic-
tionary, defines the type of task, and in the case of a compiled task, the name of the pro-
cess in which it resides.

text file
A file which contains only text (character data), and which is maintained in the form
expected by the text processing tools of the host OS.

unary operator
An operator which operates on a single operand, i.e., the minus sign in the expression
"−x", or the boolean complement operator in the expression "!x".

virtual memory
If the address space of a process exceeds the amount of physical memory which the pro-
cess can directly address, the process is using virtual memory. The virtual address space
is organized into a series of fixed size pages. The amount of physical memory available
to a process is known as the working set of a process. Pages which are not memory
resident, i.e., not in the working set, reside on some form of backing store, usually a disk
file. When a page is referenced which is not in the working set, a page fault occurs, caus-
ing the page to be read into the working set. If the pattern of memory accesses is such
that a page fault occurs on nearly every access, the process is said to be thrashing, and
will run exceedingly slowly.

virtual operating system
A package of system calls, providing a set of primitive functions comparable to those pro-
vided by an actual operating system, which can be interfaced to a number of actual operat-
ing systems. The IRAF virtual operating system provides routines (the so-called z-
routines) for file access, process initiation and control, interprocess communication,
memory management, magtape i/o, exception handling, logical names, and time and date.

- 39 -

whitespace
A sequence of one or more occurrences of the characters blank or tab.

z-routines
Machine dependent routines, used to interface to the host operating system. The IRAF z-
routines are maintained in the package "OS".

