
The IRAF CCD Reduction Package -- CCDRED

Francisco Valdes

IRAF Group - Central Computer Services
National Optical Astronomy Observatories††

P.O. Box 26732, Tucson, Arizona 85726
September 1987

ABSTRACT

The IRAF† CCD reduction package, ccdred, provides tools for the easy
and efficient reduction of CCD images. The standard reduction operations are
replacement of bad pixels, subtraction of an overscan or prescan bias, subtrac-
tion of a zero level image, subtraction of a dark count image, division by a flat
field calibration image, division by an illumination correction, subtraction of a
fringe image, and trimming unwanted lines or columns. Another common
operation provided by the package is scaling and combining images with a
number of algorithms for rejecting cosmic rays. Data in the image header is
used to make the reductions largely automated and self-documenting though the
package may still be used in the absence of this data. Also a translation
mechanism is used to relate image header parameters to those used by the pack-
age to allow data from a variety of observatories and instruments to be pro-
cessed. This paper describes the design goals for the package and the main
tasks and algorithms which satisfy these goals.

This paper is to be published as part of the proceedings of the Santa Cruz
Summer Workshop in Astronomy and Astrophysics, Instrumentation for
Ground-Based Optical Astronomy: Present and Future, edited by Lloyd B.
Robinson and published by Springer-Verlag.

†Image Reduction and Analysis Facility (IRAF), a software system distributed
by the National Optical Astronomy Observatories (NOAO).

July 2, 1990

††Operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with the
National Science Foundation.

The IRAF CCD Reduction Package -- CCDRED

Francisco Valdes

IRAF Group - Central Computer Services
National Optical Astronomy Observatories††

P.O. Box 26732, Tucson, Arizona 85726
September 1987

1. Introduction
The IRAF CCD reduction package, ccdred, provides tools for performing the standard

instrumental corrections and calibrations to CCD images. The major design goals were:
� To be easy to use
� To be largely automated
� To be image header driven if the data allows
� To be usable for a variety of instruments and observatories
� To be efficient and capable of processing large volumes of data

This paper describes the important tasks and algorithms and shows how these design goals were
met. It is not intended to describe every task, parameter, and usage in detail; the package has
full documentation on each task plus a user’s guide.

The standard CCD correction and calibration operations performed are replacement of bad
columns and lines by interpolation from neighboring columns and lines, subtraction of a bias
level determined from overscan or prescan columns or lines, subtraction of a zero level using a
zero length exposure calibration image, subtraction of a dark count calibration image appropri-
ately scaled to the dark time exposure of the image, division by a scaled flat field calibration
image, division by an illumination image (derived from a blank sky image), subtraction of a
scaled fringe image (also derived from a blank sky image), and trimming the image of unwanted
lines or columns such as the overscan strip. The processing may change the pixel datatype on
disk (IRAF allows seven image datatypes); usually from 16 bit integer to real format. Two spe-
cial operations are also supported for scan mode and one dimensional zero level and flat field
calibrations; i.e. the same calibration is applied to each CCD readout line. Any set of opera-
tions may be done simultaneously over a list of images in a highly efficient manner. The reduc-
tion operations are recorded in the image header and may also be logged on the terminal and in
a log file.

The package also provides tools for combining multiple exposures of object and calibra-
tion images to improve the statistical accuracy of the observations and to remove transient bad
pixels. The combining operation scales images of different exposure times, adjusts for variable
sky background, statistically weights the images by their signal-to-noise, and provides a number
of useful algorithms for detecting and rejecting transient bad pixels.

Other tasks are provided for listing reduction information about the images, deriving
secondary calibration images (such as sky corrected flat fields or illumination correction
images), and easily setting the package parameters for different instruments.

This paper is organized as follows. There is a section giving an overview of how the
package is used to reduce CCD data. This gives the user’s perspective and illustrates the gen-
eral ease of use. The next section describes many of the features of the package contributing to

††Operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with the
National Science Foundation.

- 2 -

its ease of use, automation, and generality. The next two sections describe the major tools and
algorithms in some detail. This includes discussions about achieving high efficiency. Finally
the status of the package and its use at NOAO is given. References to additional documentation
about IRAF and the CCD reduction package and an appendix listing the individual tasks in the
package are found at the end of this paper.

2. A User’s Overview
This section provides an overview of reducing data with the IRAF CCD reduction pack-

age. There are many variations in usage depending on the type of data, whether the image
headers contain information about the data which may be used by the tasks, and the scientific
goal. Only a brief example is given. A more complete discussion of usage and examples is
given in A User’s Guide to the IRAF CCDRED Package. The package was developed within
the IRAF system and so makes use of all the sophisticated features provided. These features are
also summarized here for those not familiar with IRAF since they are an important part of using
the package.

Since the IRAF system is widely distributed and runs on a wide variety of computers, the
site of the CCD reductions might be at the telescope, a system at the observatory provided for
this purpose, or at the user’s home computer. The CCD images to be processed are either avail-
able immediately as the data is taken, transferred from the data taking computer via a network
link (the method adopted at NOAO), or transferred to the reduction computer via a medium
such as magnetic tape in FITS format. The flexibility in reduction sites and hardware is one of
the virtues of the IRAF-based CCD reduction package.

IRAF tasks typically have a number of parameters which give the user control over most
aspects of the program. This is possible since the parameters are kept in parameter files so that
the user need not enter a large number of parameters every time the task is run. The user may
change any of these parameters as desired in several ways, such as by explicit assignment and
using an easy to learn and use, fill-in-the-value type of screen editor. The parameter values are
learned so that once a user sets the values they are maintained until the user changes them
again; even between login sessions.

The first step in using the CCD reduction package is to set the default processing parame-
ters for the data to be reduced. These parameters include a database file describing the image
header keyword translations and default values, the processing operations desired (operations
required vary with instrument and observer), the calibration image names, and certain special
parameters for special types of observations such as scan mode. A special script task (a com-
mand procedure) is available to automatically set the default values, given the instrument name,
to standard values defined by the support staff. Identifying the instrument in this way may be
all the novice user need do though most people quickly learn to adjust parameters at will.

As an example suppose there is an instrument identified as rca4m for an RCA CCD at
the NOAO 4 meter telescope. The user gives the command

cl> setinstrument rca4m

which sets the default parameters to values suggested by the support staff for this instrument.
The user may then change these suggested values if desired. In this example the processing
switches are set to perform overscan bias subtraction, zero level image subtraction, flat fielding,
and trimming.

The NOAO image headers contain information identifying the type of image, such as
object, zero level, and flat field, the filter used to match flat fields with object images, the loca-
tion of the overscan bias data, the trim size for the data, and whether the image has been pro-
cessed. With this information the user need not worry about selecting images, pairing object
images with calibration images, or inadvertently reprocessing an image.

The first step is to combine multiple zero level and flat field observations to reduce the

- 3 -

effects of statistical noise. This is done by the commands

cl> zerocombine *.imh
cl> flatcombine *.imh

The "cl> " is the IRAF command language prompt. The first command says look through all
the images and combine the zero level images. The second command says look through all the
images and combine the flat field images by filter. What could be simpler? Some hidden
(default) parameters the user may modify are the combined image name, whether to process the
images first, and the type of combining algorithm to use.

The next step is to process the images using the combined calibration images. The com-
mand is

cl> ccdproc *.imh

This command says look through all the images, find the object images, find the overscan data
based on the image header and subtract the bias, subtract the zero level calibration image, divide
by the flat field calibration image, and trim the bias data and edge lines and columns. During
this operation the task recognizes that the zero level and flat field calibration images have not
been processed and automatically processes them when they are needed. The log output of this
task, which may be to the terminal, to a file, or both, shows how this works.

ccd003: Jun 1 15:12 Trim data section is [3:510,3:510]
ccd003: Jun 1 15:12 Overscan section is [520:540,*], mean=485.0
Dark: Jun 1 15:12 Trim data section is [3:510,3:510]
Dark: Jun 1 15:13 Overscan section is [520:540,*], mean=484.6
ccd003: Jun 1 15:13 Dark count image is Dark.imh
FlatV: Jun 1 15:13 Trim data section is [3:510,3:510]
FlatV: Jun 1 15:14 Overscan section is [520:540,*], mean=486.4
ccd003: Jun 1 15:15 Flat field image is FlatV.imh, scale=138.2
ccd004: Jun 1 15:16 Trim data section is [3:510,3:510]
ccd004: Jun 1 15:16 Overscan section is [520:540,*], mean=485.2
ccd004: Jun 1 15:16 Dark count image is Dark.imh
ccd004: Jun 1 15:16 Flat field image is FlatV.imh, scale=138.2

<... more ...>
ccd013: Jun 1 15:22 Trim data section is [3:510,3:510]
ccd013: Jun 1 15:23 Overscan section is [520:540,*], mean=482.4
ccd013: Jun 1 15:23 Dark count image is Dark.imh
FlatB: Jun 1 15:23 Trim data section is [3:510,3:510]
FlatB: Jun 1 15:23 Overscan section is [520:540,*], mean=486.4
ccd013: Jun 1 15:24 Flat field image is FlatB.imh, scale=132.3

<... more ...>

The log gives the name of the image and a time stamp for each entry. The first image is
ccd003. It is to be trimmed to the specified size given as an image section, an array notation
used commonly in IRAF to specify subsections of images. The location of the overscan data is
also given by an image section which, in this case, was found in the image header. The mean
bias level of the overscan is also logged though the overscan is actually a function of the
readout line with the order of the function selected by the user.

When the task comes to subtracting the zero level image it first notes that the calibration
image has not been processed and switches to processing the zero level image. Since it knows
it is a zero level image the task does not attempt to zero level or flat field correct this image.
After the zero level image has been processed the task returns to the object image only to find
that the flat field image also has not been processed. It determines that the object image was

- 4 -

obtained with a V filter and selects the flat field image having the same filter. The flat field
image is processed through the zero level correction and then the task again returns to the object
image, ccd003, which it finishes processing.

The next image, ccd004, is also a V filter observation. Since the zero level and V filter
flat field have been processed the object image is processed directly. This continues for all the
object images except for a detour to process the B filter flat field when the task first encounters
a B filter object image.

In summary, the basic usage of the CCD reduction package is quite simple. First, the
instrument is identified and some parameters for the data are set. Calibration images are then
combined if needed. Finally, the processing is done with the simple command

cl> ccdproc *.imh&

where the processing is performed as a background job in this example. This simplicity was a
major goal of the package.

3. Features of the Package
This section describes some of the special features of the package which contribute to its

ease of use, generality, and efficiency. The major criteria for ease of use are to minimize the
user’s record keeping involving input and output image names, the types of images, subset
parameters such as filters which must be kept separate, and the state of processing of each
image. The goal is to allow input images to be specified using simple wildcards, such as
"*.imh" to specify all images, with the knowledge that the task will only operate on images for
which it makes sense. To accomplish this the tasks must be able to determine the type of
image, subset, and the state of processing from the image itself. This is done by making use of
image header parameters.

For generality the package does not require any image header information except the expo-
sure time. It is really not very much more difficult to reduce such data. Mainly, the user must
be more explicit about specifying images and setting task parameters or add the information to
the image headers. Some default header information may also be set in the image header trans-
lation file (discussed below).

One important image header parameter is the image type. This discriminates between
object images and various types of calibration images such as flat field, zero level, dark count,
comparison arcs, illumination, and fringe images. This information is used in two ways. For
most of the tasks the user may select that only one type of image be considered. Thus, all the
flat field images may be selected for combining or only the processing status of the object
images be listed. The second usage is to allow the processing tasks to identify the standard cali-
bration images and apply only those operations which make sense. For example, flat field
images are not divided by a flat field. This allows the user to set the processing operations
desired for the object images without fear of misprocessing the calibration images. The image
type is also used to automatically select calibration images from a list of images to be processed
instead of explicitly identifying them.

A related parameter specifies the subset. For certain operations the images must have a
common value for this parameter. This parameter is often the filter but it may also apply to a
grating or aperture, for example. The subset parameter is used to identify the appropriate flat
field image to apply to an image or to select common flat fields to be combined into a higher
quality flat field. This is automatic and the user need not keep track of which image was taken
with which filter or grating.

The other important image header parameters are the processing flags. These identify
when an image has been processed and also act as a history of the operation including calibra-
tion images used and other parameter information. The usage of these parameters is obvious; it
allows the user to include processed images in a wildcard list knowing that the processing will

- 5 -

not be repeated and to quickly determine the processing status of the image.

Use of image header parameters often ties the software to the a particular observatory. To
maintain generality and usefulness for data other than that at NOAO, the CCD reduction pack-
age was designed to provide a translation between parameters requested by the package and
those actually found in the image header. This translation is defined in a simple text file which
maps one keyword to another and also gives a default value to be used if the image header does
not include a value. In addition the translation file maps the arbitrary strings which may iden-
tify image types to the standard types which the package recognizes. This is a relatively simple
scheme and does not allow for forming combinations or for interpreting values which are not
simple such as embedding an exposure time as part of a string. A more complex translation
scheme may prove desirable as experience is gained with other types of image header formats,
but by then a general header translation ability and/or new image database structure may be a
standard IRAF feature.

This feature has proven useful at NOAO. During the course of developing the package the
data taking system was modernized by updating keywords and adding new information in the
image headers, generally following the lines laid out by the ccdred package. However, there is
a period of transition and it is also desirable to reduce preexisting data. There are several
different formats for this data. The header translation files make coping with these different for-
mats relatively easy.

A fundamental aspect of the package is that the processing modifies the images. In other
words, the reduction operations are performed directly on the image. This "feature" further
simplifies record keeping, frees the user from having to form unique output image names, and
minimizes the amount of disk space required. There are two safety features in this process.
First, the modifications do not take effect until the operation is completed on the image. This
allows the user to abort the task without leaving the image data in a partially processed state and
protects data if the computer crashes. The second feature is that there is a parameter which may
be set to make a backup of the input data with a particular prefix; for example "b", "orig", or
"imdir$" (a logical directory prefix). This backup feature may be used when there is sufficient
disk space, when learning to use the package, or just to be cautious.

In a similar effort to efficiently manage disk space, when combining images into a master
object or calibration image, there is an option to delete the input images upon completion of the
combining operation. Generally this is desirable when there are many calibration exposures,
such as zero level or flat field images, which are not used after they are combined into a final
calibration image.

The goal of generality for many instruments at different observatories inherently conflicts
with the goal of ease of use. Generality requires many parameters and options. This is feasible
in the CCD reduction package, as well as the other IRAF packages, because of the IRAF param-
eter handling mechanism. In ccdred there still remains the problem of setting the parameters
appropriately for a particular instrument, image header format, and observatory.

To make this convenient there is a task, setinstrument, that, based on an instrument
name, runs a setup script for the instrument. An example of this task was given in the previous
section. The script may do any type of operation but mainly it sets default parameters. The
setup scripts are generally created by the support staff for the instrument. The combination of
the setup script and the instrument translation file make the package, in a sense, programmable
and achieves the desired instrument/observatory generality with ease of use.

4. CCD Processing
This section describes in some detail how the CCD processing is performed. The task

which does the basic CCD processing is call ccdproc. From the point of view of usage the task
is very simple but a great deal is required to achieve this simplicity. The approach we take in
describing the task is to follow the flow of control as the task runs with digressions as appropri-
ate.

- 6 -

The highest level of control is a loop over the input images; all the operations are per-
formed successively on each image. It is common for IRAF tasks which operate on individual
images to allow the operation to be repeated automatically over a list of input images. This is
important in the ccdred package because data sets are often large and the processing is gen-
erally the same for each image. It would be tedious to have to give the processing command for
each image to be processed. If an error occurs while processing an image the error is printed as
a warning and processing continues with the next image. This provides protection primarily
against mistyped or nonexistent images.

Before the first image is processed the calibration images are identified. There are two
ways to specify calibration images; explicitly via task parameters or implicitly as part of the list
of images to be processed. Explicitly identifying calibration images takes precedence over cali-
bration images in the input list. Specifying calibration images as part of the input image list
requires that the image types can be determined from the image header. Using the input list
provides a mechanism for breaking processing up into sets of images (possibly using files con-
taining the image names for each set) each having their own calibration images. One can, of
course, selectively specify input and calibration images, but whenever possible one would like
to avoid having to specify explicit images to process since this requires record keeping by the
user.

The first step in processing an image is to check that it is of the appropriate image type.
The user may select to process images of only one type. Generally this is object images since
calibration images are automatically processed as needed. Images which are not of the desired
type are skipped and the next image is considered.

A temporary output image is created next. The output pixel datatype on disk may be
changed at this point as selected by the user. For example it is common for the raw CCD
images to be digitized as 16 bit integers but after calibration it is sometimes desirable to have
real format pixels. If no output pixel datatype is specified the output image takes the same pixel
datatype as the input image. The processing is done by operating on the input image and writ-
ing the results to a temporary output image. When the processing is complete the output image
replaces the input image. This gives the effect of processing the images in place but with cer-
tain safeguards. If the computer crashes or the processing is interrupted the integrity of the
input image is maintained. The reasons for chosing to process the images in this way are to
avoid having to generate new image names (a tiresome record keeping process for the user), to
minimize disk usage, and generally the unprocessed images are not used once they have been
processed. When dealing with large volumes of data these reasons become fairly important.
However, the user may specify a backup prefix for the images in which case, once the process-
ing is completed, the original input image is renamed by appending it to the prefix (or with an
added digit if a previous backup image of the same name exits) before the processed output
image takes the original input name.

The next step is to determine the image geometry. Only a subsection of the raw image
may contain the CCD data. If this region is specified by a header parameter then the processing
will affect only this region. This allows calibration and other data to be part of the image. Nor-
mally, the only other data in a image is overscan or prescan data. The location of this bias data
is determined from the image header or from a task parameter (which overrides the image
header value). To relate calibration images of different sizes and to allow for readout of only a
portion of the CCD detector, a header parameter may relate the image data coordinates to the
full CCD coordinates. Application of calibration image data and identifying bad pixel regions
via a bad pixel file is done in this CCD coordinate system. The final geometrical information is
the region of the input image to be output after processing; an operation called trimming. This
is defined by an image header parameter or a task parameter. Trimming of the image is selected
by the user. Any or all of this geometry information may be absent from the image and
appropriate defaults are used.

Each selected operation which is appropriate for the image type is then considered. If the
operation has been performed previously it will not be repeated. If all selected operations have

- 7 -

been performed then the temporary output image is deleted and the input image is left
unchanged. The next image is then processed.

For each selected operation to be performed the pertinent data is determined. This consists
of such things as the name of the calibration image, scaling factors, the overscan bias function,
etc. Note that at this point only the parameters are determined, the operation is not yet per-
formed. This is because operations are not performed sequentially but simultaneously as
described below. Consider flat fielding as an example. First the input image is checked to see
if it has been flat fielded. Then the flat field calibration image is determined. The flat field
image is checked to see if it has been processed. If it has not been processed then it is pro-
cessed by calling a procedure which is essentially a copy of the main processing program. After
the flat field image has been processed, parameters affecting the processing, such as the flat field
scale factor (essentially the mean of the flat field image), are determined. A log of the operation
is then printed if desired.

Once all the processing operations and parameters have been defined the actual processing
begins. One of the key design goals was that the processing be efficient. There are two primary
methods used to achieve this goal; separate processing paths for 16 bit integer data and floating
point data and simultaneous operations. If the image, the calibration images, and the output
image (as selected by the user) are 16 bit integer pixel datatypes then the image data is read and
written as integer data. This eliminates internal datatype conversions both during I/O and dur-
ing computations. However, many operations include use of real factors such as the overscan
bias, dark count exposure scaling, and flat field scaling which causes the computation to be done
in real arithmetic before the result is stored again as an integer value. In any case there is never
any loss of precision except when converting the output pixel to short integer. If any of the
images are not integer then a real internal data path is used in which input and output image
data are converted to real as necessary.

For each data path the processing proceeds line-by-line. For each line in the output image
data region (ignoring pixels outside the data area and pixels which are trimmed) the appropriate
input data and calibration data are obtained. The calibration data is determined from the CCD
coordinates of the output image and are not necessarily from the same image line or columns.
The input data is copied to the output array while applying bad pixel corrections and trimming.
The line is then processed using a specially optimized procedure. This procedure applies all
operations simultaneously for all combinations of operations. As an example, consider subtract-
ing an overscan bias, subtracting a zero level, and dividing by a flat field. The basic kernel of
the task, where the bulk of the CPU time is used, is

do i = 1, n
out[i] = (out[i] - overscan - zero[i]) * flatscale / flat[i]

Here, n is the number of pixels in the line, overscan is the overscan bias value for the line, zero
is the zero level data from the zero level image, flatscale is the mean of the flat field image, and
flat is the flat field data from the flat field image. Note the operations are not applied sequen-
tially but in a single statement. This is the most efficient method and there is no need for inter-
mediate images.

Though the processing is logically performed line-by-line in the program, the image I/O
from the disk is not done this way. The IRAF virtual operating system image interface
automatically provides multi-line buffering for maximal I/O efficiency.

In many image processing systems it has been standard to apply operations sequentially
over an image. This requires producing intermediate images. Since this is clearly inefficient in
terms of I/O it has been the practice to copy the images into main memory and operate upon
them there until the final image is ready to be saved. This has led to the perception that in order
to be efficient an image processing system must store images in memory. This is not true and
the IRAF CCD reduction package illustrates this. The CCD processing does not use intermedi-
ate images and does not need to keep the entire image in main memory. Furthermore, though

- 8 -

of lesser importance than I/O, the single statement method illustrated above is more efficient
than multiple passes through the images even when the images are kept in main memory.
Finally, as CCD detectors increase in size and small, fast, and cheap processors become com-
mon it is a distinct advantage to not require the large amounts of memory needed to keep entire
images in memory.

There is one area in which use of main memory can improve performance and ccdproc
does take advantage of it if desired. The calibration images usually are the same for many input
images. By specifying the maximum amount of memory available for storing images in
memory the calibration images may be stored in memory up to that amount. By parameterizing
the memory requirement there is no builtin dependence on large memory!

After processing the input image the last steps are to log the operations in the image
header using processing keywords and replace the input image by the output image as described
earlier. The CCD coordinates of the data are recorded in the header, even if not there previ-
ously, to allow further processing on the image after the image has been trimmed.

5. Combining Images
The second important tool in the CCD reduction package is a task to combine many

images into a single, higher quality image. While this may also be done with more general
image processing tools (the IRAF task imsum for example) the ccdred tasks include special
CCD dependent features such as recognizing the image types and using the image header trans-
lation file. Combining images is often done with calibration images, which are easy to obtain in
number, where it is important to minimize the statistical noise so as to not affect the object
images. Sometimes object images also are combined. The task is called combine and there are
special versions of this task called zerocombine, darkcombine, and flatcombine for the stan-
dard calibration images.

The task takes a list of input images to be combined. As output there is the combined
image, an optional sigma image, and optional log output either to the terminal, to a log file, or
both. A subset or subsets of the input images may be selected based on the image type and a
subset parameter such as the filter. As with the processing task, this allows selecting images
without having to explicitly list each image from a large data set. When combining based on a
subset parameter there is an output image, and possibly a sigma image, for each separate subset.
The output image pixel datatype may also be changed during combining; usually from 16 bit
integer input to real output. The sigma image is the standard deviation of the input images
about the output image.

Except for summing the images together, combining images may require correcting for
variations between the images due to differing exposure times, sky background, extinctions, and
positions. Currently, extinction corrections and registration are not included but scaling and
shifting corrections are included. The scaling corrections may be done by exposure times or by
computing the mode in each image. Additive shifting is also done by computing the mode in
the images. The region of the image in which the mode is computed can be specified but by
default the whole image is used. A scaling correction is used when the flux level or sensitivity
is varying. The offset correction is used when the sky brightness is varying independently of
the object brightness. If the images are not scaled then special data paths combine the images
more efficiently.

Except for medianing and summing, the images are combined by averaging. The average
may be weighted by

weight = (N * scale / mode) ** 2

where N is the number of images previously combined (the task records the number of images
combined in the image header), scale is the relative scale (applied by dividing) from the expo-
sure time or mode, and mode is the background mode estimate used when adding a variable
offset.

- 9 -

The combining operation is the heart of the task. There are a number algorithms which
may be used as well as applying statistical weights. The algorithms are used to detect and reject
deviant pixels, such as cosmic rays. The choice of algorithm depends on the data, the number
of images, and the importance of rejecting cosmic rays. The more complex the algorithm the
more time consuming the operation. The list below summarizes the algorithms. Further algo-
rithms may be added in time.

Sum - sum the input images
The input images are combined by summing. Care must be taken not to exceed the range
of the 16 bit integer datatype when summing if the output datatype is of this type. Sum-
ming is the only algorithm in which scaling and weighting are not used. Also no sigma
image is produced.

Average - average the input images
The input images are combined by averaging. The images may be scaled and weighted.
There is no pixel rejection. A sigma image is produced if more than one image is com-
bined.

Median - median the input images
The input images are combined by medianing each pixel. Unless the images are at the
same exposure level they should be scaled. The sigma image is based on all the input
images and is only an approximation to the uncertainty in the median estimates.

Minreject, maxreject, minmaxreject - reject extreme pixels
At each pixel the minimum, maximum, or both are excluded from the average. The
images should be scaled and the average may be weighted. The sigma image requires at
least two pixels after rejection of the extreme values. These are relatively fast algorithms
and are a good choice if there are many images (>15).

Threshold - reject pixels above and below specified thresholds
The input images are combined with pixels above and below specified threshold values
(before scaling) excluded. The images may be scaled and the average weighted. The
sigma image also has the rejected pixels excluded.

Sigclip - apply a sigma clipping algorithm to each pixel
The input images are combined by applying a sigma clipping algorithm at each pixel. The
images should be scaled. This only rejects highly deviant points and so includes more of
the data than the median or minimum and maximum algorithms. It requires many images
(>10-15) to work effectively. Otherwise the bad pixels bias the sigma significantly. The
mean used to determine the sigmas is based on the "minmaxrej" algorithm to eliminate the
effects of bad pixels on the mean. Only one iteration is performed and at most one pixel
is rejected at each point in the output image. After the deviant pixels are rejected the final
mean is computed from all the data. The sigma image excludes the rejected pixels.

Avsigclip - apply a sigma clipping algorithm to each pixel
The input images are combined with a variant of the sigma clipping algorithm which
works well with only a few images. The images should be scaled. For each line the mean
is first estimated using the "minmaxrej" algorithm. The sigmas at each point in the line
are scaled by the square root of the mean, that is a Poisson scaling of the noise is
assumed. These sigmas are averaged to get a line estimate of the sigma. Then the sigma
at each point in the line is estimated by multiplying the line sigma by the square root of
the mean at that point. As with the sigma clipping algorithm only one iteration is per-
formed and at most one pixel is rejected at each point. After the deviant pixels are
rejected the file mean is computed from all the data. The sigma image excludes the
rejected pixels.

The "avsigclip" algorithm is the best algorithm for rejecting cosmic rays, especially with a
small number of images, but it is also the most time consuming. With many images (>10-15) it
might be advisable to use one of the other algorithms ("maxreject", "median", "minmaxrej")

- 10 -

because of their greater speed.

This task also has several design features to make it efficient and versatile. There are
separate data paths for integer data and real data; as with processing, if all input images and the
output image are of the same datatype then the I/O is done with no internal conversions. With
mixed datatypes the operations are done as real. Even in the integer path the operations requir-
ing real arithmetic to preserve the accuracy of the calculation are performed in that mode.
There is effectively no limit to the number of images which may be combined. Also, the task
determines the amount of memory available and buffers the I/O as much as possible. This is a
case where operating on images from disk rather than in memory is essential.

6. Status and Conclusion
The initial implementation of the IRAF ccdred package was completed in June 1987. It

has been in use at the National Optical Astronomy Observatories since April 1987. The pack-
age was not distributed with Version 2.5 of IRAF (released in August 1987) but is available as a
separate installation upon request. It will be part of future releases of IRAF.

At NOAO the CCD reduction package is available at the telescopes as the data is
obtained. This is accomplished by transferring the images from the data taking computer to a
Sun workstation (Sun Microsystems, Inc.) initially via tape and later by a direct link. There are
several reasons for adopting this architecture. First, the data acquisition system is well esta-
blished and is dedicated to its real-time function. The second computer was phased in without
disrupting the essential operation of the telescopes and if it fails data taking may continue with
data being stored on tape. The role of the second computer is to provide faster and more power-
ful reduction and analysis capability not required in a data acquisition system. In the future it
can be more easily updated to follow the state of the art in small computers. As CCD detectors
get larger the higher processing speeds will be essential to keep up with the data flow.

By writing the reduction software in the high level, portable, IRAF system the users have
the capability to process their data from the basic CCD reductions to a full analysis at the tele-
scope. Furthermore, the same software is widely available on a variety of computers if later
processing or reprocessing is desired; staff and visitors at NOAO may also reduce their data at
the headquarters facilities. The use of a high level system was also essential in achieving the
design goals; it would be difficult to duplicate this complex package without the rich program-
ming environment provided by the IRAF system.

7. References
The following documentation is distributed by the National Optical Astronomy Observa-

tories, Central Computer Services, P.O. Box 26732, Tucson, Arizona, 85726. A comprehensive
description of the IRAF system is given in The IRAF Data Reduction and Analysis System by
Doug Tody (also appearing in Proceedings of the SPIE - Instrumentation in Astronomy VI, Vol.
627, 1986). A general guide to using IRAF is A User’s Introduction to the IRAF Command
Language by Peter Shames and Doug Tody. Both these documents are also part of the IRAF
documentation distributed with the system.

A somewhat more tutorial description of the ccdred package is A User’s Guide to the
IRAF CCDRED Package by the author. Detailed task descriptions and supplementary docu-
mentation are given in the on-line help library and are part of the user’s guide.

8. Appendix
The current set of tasks making up the IRAF CCD Reduction Package, ccdred, are sum-

marized below.

badpiximage - Create a bad pixel mask image from a bad pixel file
ccdgroups - Group CCD images into image lists
ccdhedit - CCD image header editor

- 11 -

ccdlist - List CCD processing information
ccdproc - Process CCD images
combine - Combine CCD images

darkcombine - Combine and process dark count images
flatcombine - Combine and process flat field images
mkfringecor - Make fringe correction images from sky images
mkillumcor - Make flat field illumination correction images
mkillumflat - Make illumination corrected flat fields

mkskycor - Make sky illumination correction images
mkskyflat - Make sky corrected flat field images

setinstrument - Set instrument parameters
zerocombine - Combine and process zero level images

