National Optical Astronomy Observatories

MEMORANDUM

TO: distribution DATE: May 7, 1985
FROM: Doug Tody
SUBJECT: New release of imagei/o, etc. [NOTE: Good overview paper.]

The new release of IMIO has been installed in the system for a week now and appears to be bug
free. This memo summarizes the changes/additions in this new version of the interface, and introduces
the new "image database" tools hedit and hselect as well.

1. Summary of Changesin the Current Release
The following changes or additions have been made to the IMIO interface and the images package.

e IMIO now has the ability to perform (optionally) automatic boundary extension to satisfy out
of bounds pixel references.

e A preliminary database interface has been added to IMIO.

e Image headers are now variable length and use only the amount of disk space required to
store the header (excluding byte packing).

e Two new database utility tasks hedit and hselect have been added to the images package.
Both use the new library subroutine evexpr, now installed in the FMTIO package.

e A new task imshift has been added to the images package to perform shifts of two dimen-
sional images using full two dimensiona interpolation. The related tasks geomap and geo-
tran are currently being worked on. Some filtering and convolution tasks should also be
available soon. All of these tasks use the new boundary extension feature of IMIO.

The new release of IMIO is upward compatible with previous versions and should require no
changes to or even recompilation of existing code. The basic image header structure is unchanged
hence existing images and image headers are still accessible. Copying of old images still on disk with
imcopy may however be desirable to reduce disk consumption (the old headers were wasteful of
storage).

This release of IMIO introduces some database tools and concepts which should help us under-
stand the role the DBIO interface and DBMS package will play in image processing applications in the
near future. The current database interface has serious functional limitations and is inefficient for opera-
tions which operate upon entire databases (e.g., the select operation), but does provide a basic and much
needed image database capability.

2. Planned Future Developments

This new release of IMIO is expected to remain unchanged until DBIO is completed, at which
time a new version of the interface will be released. This next release is expected to be upward compa-
tible with the current interface except in cases where the applications task has detailed knowledge of the
current image header structure. Applications which directly access the "user ared’ of the current header,
or which use certain header fields such as IM_HISTORY, will have to be modified as these data struc-
tures will change in the next release.

Applications which use only immap, imunmap, IM_PIXTYPE, IM_NDIM, IM_LEN, and the basic
i/0 procedures should not have to be changed. The new interface will provide different facilities to do
the same things but we can probably emulate the old interface to alow plenty of time to convert the old
code. Of course, the new interface will provide new facilities which we did not formerly have and
which we will want to use, and therefore we will eventually have to modify al existing image tasks.

May 7, 1985

-2-

Perhaps more seriously, we are not going to be able to maintain the ability to read the existing
binary image files when the DBIO version of IMIO is released. At that time, all disk resident images
will have to be processed to FITS format and thence into the new DBIO image format. We will keep
the old binary for the FITS writer task around for an indefinite period after the changeover to make this
possible.

3. Modifications to the Current Interface

3.1. Boundary extension

Automatic boundary extension is useful in applications such as filtering via convolution, since the
convolution kernel will extend beyond the boundary of the image when near the boundary, and in appli-
cations which operate upon subrasters, for the same reason. When reading from an image with boun-
dary extension in effect, IMIO will generate artificial values for the out of bounds pixels using one of
the techniques listed below. When writing to an image with boundary extension in effect, the out of
bounds pixels are discarded.

By default, an out of bounds pixel reference will result in an error message from IMIO. Consider
an image line of length 5 pixels. The statement

buf = imgslr (im -1, 7)

references out of bounds by 2 pixels on either end of the image line, referencing a total of 5+2+2=9 pix-
els. If boundary extension is enabled and the get section completes successfully then Memr[buf] will
reference the pixel at X = -1, and Memr[buf+2] will reference the first inbounds pixel.

When an image is first opened zero pixels of boundary extension are selected, and any out of
bounds references will result in an error. To enable boundary extension imseti must be called on the
open image to specify the number of pixels of boundary extension permitted before an out of bounds
error occurs.

i ncl ude <inset. h>
call imseti (im | MNBNDRYPI X, 2)

If boundary extension is enabled the type of boundary extension desired should also be set. The possi-
bilities are defined in <imset.n> and are summarized below.

BT _CONSTANT return constant if out of bounds
BT_NEAREST return nearest boundary pi xel
BT_REFLECT reflect back into inage

BT_WV\RAP wrap around to other side
BT_PRQJIECT proj ect about boundary

Types of Boundary Extension

The type of boundary extension is set with the imset parameter IM_TYBNDRY. If the
BT_CONSTANT option is selected the constant value should be set with an imseti or imsetr call to set
the parameter IM_BNDRYPIXVAL. Boundary extension works for images of any dimension up to 7
(the current IMIO limit). A single IM_NBNDRYPIX value is used for all dimensions. This value is
used only for bounds checking, hence the value should be set to the maximum out of bounds reference
expected for any dimension. Larger values do not "cost more" than small ones. An actual out of
bounds reference is however more expensive than an inbounds reference.

May 7, 1985

3.2. Image Database I nterface

The image database interface is the IMIO interface to the database containing the image headers.
In this implementation the image header is a variable length binary structure. The first, fixed format,
part of the image header contains the standard fields in binary and is fixed in size. This is followed by
the so called "user area’, a string buffer containing a sequence of variable length, newline delimited
FITS format keyword=value header cards. When an image is opened a large user area is allocated to
permit the addition of new parameters without filling up the buffer. When the header is subsequently
updated on disk only as much disk space is used as is needed to store the actual header.

The new header format is upwards compatible with the old image header format, hence old images
and programs do not have to be modified to use the latest release of IMIO. In the future image headers
will be maintained under DBIO, but the routines in the image header database interface described in this
section are not exected to change. The actual disk format of images will of course change when we
switch over to the DBIO headers. While the physical storage format of header will change completely
under DBIO, the logical schema will change very little, i.e., our mental picture of an image header will
be much as it is now. The main difference will be the consolidation of many images into a few files,
and real support in the image header for bad pixels, history, and coordinate transformations. In addition
a number of restrictions on the "user fields' will be lifted, the remaining distinctions between the stan-
dard and user fields will disappear, and database operations will be much more efficient than they are
NOW.

3.2.1. Library Procedures

The IMIO library procedures comprising the current image database interface are summarized in
the table below.

value = inget[bcsilrd_] (im field)
imgstr (im field, outstr, maxch)
imput[bcsilrd_] (im field, value)
inmpstr (im field, value)
imadd[bcsilrd_] (im field, def_value)
imastr (im field, def_val ue)
i maddf (im field, datatype)
inmdel f (im field)
y/n = imaccf (im field)
list = inofnl[su] (im tenplate)
nchars/EOF = ingnfn (list, fieldnane, maxch)
incfnl (list)
wher e
poi nt er im |ist
char[] field, outstr, datatype, tenplate, fieldnane

Image Database | nterface Procedures

New parameters will typically be added to the image header with either one of the typed imadd
procedures or with the lower level imaddf procedure. The former procedures permit the parameter to be
created and the value initialized al in one call, while the latter only creates the parameter. In addition,
the typed imadd procedures may be used to update the values of existing parameters, i.e., it is not con-
sidered an error if the parameter already exists. The principal limitation of the typed procedures is that
they may only be used to add or set parameters of a standard datatype. The imaddf procedure will per-
mit creation of parameters with more descriptive datatypes (abstract datatypes or domains) when the
interface is recut upon DBIO. Thereis no support in the current interface for domains.

May 7, 1985

-4-

The value of any parameter may be fetched with one of the imget functions. Be careful not to
confuse imgets with imgstr (or imputs with impstr) when fetching or storing the string value of a field.
Full automatic type conversion is provided. Any field may be read or written as a string, and the usual
type conversions are permitted for the numeric datatypes.

The imaccf function may be used (like the FIO access procedure) to determine whether a field
exists. Fields are deleted with imdelf; it is an error to attempt to delete a nonexistent field.

The field name list procedures imofnl[su], imgnfn, and imcfnl procedures are similar to the familiar
file template facilities, except that the @file notation is not supported. The template is expanded upon
an image header rather than a directory. Unsorted lists are the most useful for image header fields. If
sorting is enabled each comma delimited pattern in the template is sorted separately, rather than globally
sorting the entire template after expansion. Minimum match is permitted when expanding the template,
another difference from file templates. Only actual, full length field names are placed in the output list.

3.2.2. Standard Fields

The database interface may be used to access any field of the image header, including the follow-
ing standard fields. Note that the nhomenclature has been changed dightly to make it more consistent
with FITS. Additional standard fields will be defined in the future. These names and their usage may
change in the next release of IMIO.

keyword type description

_ctine time of inage creation

[I

i _history s hi story string buffer

i _lintime | time when limts (mnmax) were | ast updated
i _maxpi xval r maxi mum pi xel val ue

i _m npixval r nm ni mum pi xel val ue

i_ntinme I time of last nodify

i _naxis [nunber of axes (dinmensionality)

i _naxis[1-7]l length of an axis ("i_naxisl", etc.)
i_pixfile s pi xel storage file

i _pixtype i pi xel datatype (SPP integer code)

i _title S title string

Standard Header Fields

The names of the standard fields share an "i_" prefix to reduce the possibility of collisions with
user field names, to identify the standard fields in sorted listings, to allow use of pattern matching to
discriminate between the standard fields and user fields, and so on. For the convenience of the user, the
"i_" prefix may be omitted provided the resultant name does not match the name of a user parameter. It
is however recommended that the full name be used in al applications software.

3.2.3. Restrictions

The use of FITS format as the internal format for storing fields in this version of the interface
places restrictions on the size of field names and of the string value of string valued parameters. Field
names are currently limited to eight characters or less and case is ignored (since FITS requires upper
case). The eight character limit does not apply to the standard fields. String values are limited to at
most 68 characters. If put string is passed a longer string it will be silently truncated. Trailing whi-
tespace and newlines are chopped when a string value is read.

May 7, 1985

4. Database Utility Tasks

Two image database utility tasks have been implemented, hedit and hselect. Hedit is the so called
header editor, used to modify, add, or delete selected fields of selected images. The hselect task is used
to select images that satisfy a selection criteria given as a boolean expression, printing a subset of the
fields of these images on the standard output in list form. Manua pages are attached.

Both of these tasks gain most of their power from use of the evexpr utility procedure, now avail-
able in FMTIO. The evexpr procedure takes as input an algebraic expression (character string), parses
and evaluates the expression, and returns as output the value of the expression.

i ncl ude <evexpr. h>
poi nt er evexpr ()

0 = evexpr (expr, getop, ufcn)

wher e

0 Is a pointer to an operand structure

expr |s a character string

getopls either NULL or the locpr address
of a user supplied procedure called during
expression evaluation to get the value of
an external operand.

ufcn |Is either NULL or the locpr address
of a user supplied procedure called during
expression evaluation to satisfy a call to
an external function.

The operand structure is defined in <evexpr.h>. The best documentation currently available for the
operators and functions provided by evexpr will be found in the manual page(s) for hedit. Additional
documentation will be found with the sources. The expression evaluation procedure is probably the sin-
gle largest procedure in the system (in terms of kilobytes added to an executable) and should not be
used unless it is needed, but it can greatly increase the power of atask in the right application.

Copy to: IRAF
Larry Goad
George Jacoby
Richard Wolff
Steve Ridgway (fyi)
Jeanette Barnes (fyi)
Ed Anderson (fyi)

May 7, 1985

