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Abstract

This document is intended to guide you through the basic principles of the reduction
of multislit spectroscopic data using IRAF. It discusses the procedures necessary to take
your data from the telescope to wavelength calibrated, one-dimensional spectra ready
for whatever further analysis you choose. Though the primary emphasis here will be on
reducing slitlet spectra taken with the KPNO 4-m telescope and cryogenic camera, many
of the procedures are also useful for reducing other types of slit data, aperture “hole”
data and multi-fiber data.
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1 Introduction

This document is intended to guide you through the basic principles of the reduction of
multislit spectroscopic data using IRAF. It discusses the procedures necessary to take your
data from the telescope to wavelength calibrated, one-dimensional spectra ready for whatever
further analysis you choose. It assumes that you are using IRAF Version 2.8.

If you are a new IRAF user it is recommended that you first read the document “A User’s
Introduction to the IRAF Command Language” by Shames and Tody, which can be found
in Volume 1A of the 4 blue binders that compose the IRAF documentation. Simultaneous
graphics and image display of your multislit data is extremely useful in the reduction process;
if you are reducing your data on a Sun workstation the manual “A Quick Look at IRAF on the
Tucson Sun Network” will help in getting you set up to take advantage of the workstation’s
capabilities.

It is assumed that you are familiar with some of the basic IRAF routines, for example
examining and changing a task’s parameter file using epar, using implot to graphically
examine a two-dimensional image, and displaying a two-dimensional image. If you are new
to IRAF, after you read the “ User’s Introduction” you should play around a little and learn
how to do these things.

The reduction of multislit data, especially of faint or extended objects, can be difficult,
and the reduction parameters will probably require a lot of “tweaking”, depending on the
quality of your data, and the results you wish to obtain. Because each data set will have its
individual problems and area of concern, this guide presents the general reduction procedures,
along with specific recommendations for how to deal with different sorts of data. There is no
substitute for really understanding your data and the reduction procedure, however, and the
user should proceed with caution and thought.

2 Calibration Frames

The following list contains the type of calibration images you may need in reducing a typical
night of multislit observations:

bias frames. These are zero second integration exposures obtained with the same pre-flash
(if any) you are using on your program objects. It is a good idea to take a set of 10-20
bias frames each night.

quartz exposures. Exposures of quartz lamps are used to normalize the response of the
CCD + aperture mask system. This normalization comes in two parts: the high spatial
frequency pixel-to-pixel response of the CCD, and the relatively uniform pattern of
illumination of slits (the “slit function”). Because of flexure in the instrumentation,
it is probably best to take quartz exposures before and after each exposure of your
program objects, and of course you will need at least one for each aperture mask you
are using. Multi-fiber and aperture “hole” data do not need quartz calibrations, but



dome flats (see below) are necessary for correcting for the overall response of the fiber
or hole.

dome or sky flats. The illumination provided by the quartz lamps is not identical to that
of the sky, and in some cases, short exposures of a dome flat are needed to correct the
slit function. These may not be necessary in some cases, but, as in the bias calibration
frames, it is better to take them than not. They are crucial in the reduction of data
where the sky background is not determined from the same slit (e.g. multi-fiber data,
aperture “holes”). The dome flats may also be augmented by sky flats; the illumination
pattern provided by the dome flats is also not identical to the sky illumination, though
it is usually adequate.

comparison frames. These short exposures of arc lamps are necessary to determine the
wavelength scale of each slit. They should ideally be taken before and after each expo-
sure, especially if velocity information is important to you. Some instruments (notably
the KPNO NESSIE multi-fiber spectrograph) also require exposures of a second lamp,
to determine zero-point shifts in the wavelength solution.

Note that flux calibration is not usually attempted with multislit data, and hence no
standard star observations are necessary.

3 Overview

The general procedure used in reducing raw data from the telescope to wavelength calibrated
one-dimensional spectra can be divided into three parts: instrumental normalization, extrac-
tion of a one-dimensional spectrum from each slit, and wavelength calibration.

The instrumental calibration process consists of the subtraction of the CCD bias using
the bias frames and the overscan region of each frame, and the removal of the CCD non-
uniformities using the quartz frames.

The extraction of the one-dimensional spectrum starts by defining the properties of each
slit. These properties are the position of the object in the slit, the spatial size of the object,
and the “curvature” of the object position as a function of dispersion (sometimes called S-
curvature). In some cases, background subtraction from adjacent pixels within the slit is
required and these regions also need to be defined. The signal within the defined aperture is
then summed for each dispersion line, and the background for that line is subtracted. The
net is your extracted spectrum.

Wavelength calibration requires first that you create similar extracted spectra for each slit
of each comparison frame. The dispersion correction (a.k.a. the wavelength calibration, or
wavelength solution) is determined for each slit using one of the comparison exposures. These
are then used to determine the (very slightly different) dispersion corrections for each of the
other comparison frames. The proper combination of these dispersion solutions is decided for
each object exposure (i.e. use the average of the comparison taken before the exposure and
the one taken after). Finally, each individual object spectrum is wavelength corrected, and
rebinned.



Figure 1: Parameters for rfits

Because extracting many individual spectra from each CCD frame (not to mention all of
the comparisons that you need) creates a frightening number of individual files, the multispec
image format has been created to keep the number of files under control and to simplify
the bookkeeping. The image format consists of a two-dimensional image where each line is
an individual spectrum from each of the slits. This greatly simplies the matter of summing
exposures taken through the same aperture mask, comparing and plotting spectra etc. Finally,
if you wish, these multispec format files can be disassembled to “normal” one-dimensional
spectra for further analysis.

4 Getting Started

4.1 Reading In Your Data From Tape

The first step is to transfer your CCD frames into “IRAF images”. These will consist of IRAF
“header files” with the extension “.imh”, and IRAF “pixel files” with the extension “.pix”.
The latter will be found in your image directory (show imdir will show you where this is),
while the headers will reside in whatever directory you happen to be in when you create the
pictures. The header files contain the information about where the pixel data resides on disk,
and when you refer to an image by its name without the extension, the “.imh” is assumed.
The first step in reading in your tape is to find an available tape drive, and figure out what
its IRAF name is. Usually the names are mta, mtb, etc., but if you are on a network you
may also need to refer to the machine that the tape drive is attached to, such as orion!mta,
tucanal!mta, and so on. To allocate the tape drive type all tucana!mta or somesuch. Next,
put the tape on (you might want to remove the write-ring first!) and fiddle with the tape
drive until the tape is on-line and at the load-point. If your tape is in FITS format we will use
rfits in the dataio package, so type dataio and then lpar rfits to see what the parameters
are. Modify the parameters using epar rfits until they resemble those shown in Figure 1.
Typing rfits tucana!mta 1-999 multi > headers & will put the task in the background



(freeing up the terminal so you can do useful things like read your e-mail and play computer
games) and write the header information into a file called “headers”. You can check its
progress by typing tail headers. If you lose track of any task you have set running in the
background, typing jobs will tell you whether it is still running, and for how long. When
the tape is read, all the files on your tape will be copied into files with names like multio01,
multi002, multi003, multi004..... If you wish to read in data from more than one tape,
then you can rewind tucanalmta when you are done, exchange the second tape for the first
(note that this way you don’t run the risk of losing your tape drive!), and then execute rfits
again this time inserting the current picture number for the “offset” parameter. When you
are done, do a deallocate tucana!mta to release the tape drive, and a bye to get rid of the
“dataio” package. If your tape is in “CAMERA” format rather than “FITS” format, then
you will need to load noao and mtlocal and use rcamera; the syntax is similar to that of
rfits.

5 Bias Subtraction

The first step in reducing any CCD data is subtracting the bias. This “bias” is a pedestal
level of several hundred ADUs which is added to the output signal of the CCD when it is read
out. The absolute level of the bias is dependent on telescope position, chip temperature etc.,
so we need to determine the overall bias level for each frame individually. This is done by
determining the level of the “overscan” region, extra pixels with no charge from the exposure.
The level of the overscan for each exposure is used to determine the average bias level, and is
subtracted from each exposure. The overscan is also subtracted from the bias frame, leaving
the pixel-to-pixel bias pattern. This bias frame is also subtracted from each of the the data
frames.

Subtracting the bias from multislit frames is no different than doing it for any other
sort of CCD data, so here we can use the standard IRAF reductions package. This guide
will step your through the procedures necessary for most multispec data, but for a more
comprehensive description, you will find “The User’s Guide to CCD Reductions with IRAF”
very useful. First, load this package by typing imred and then ccdred. The task you’ll be
using here is called cedproc. This task in its entirety is extremely complicated, but luckily
we only want to subtract a bias frame, and therefore don’t have to worry about most of its
subtleties. Type setinstrument, enter “cryocam” for instrument type, then CNTRL Z
twice to exit. More on this later.

Now, look at your data and find your bias frames. Do you need to combine several
individual frames to create a single bias (one per night, usually)? If so, use epar to look at the
task zerocombine. (“Zero” is the IRAF translation of “bias.”) This task will combine your
biases together in a reasonable fashion. You might want to type zerocombine multi001,
multi002,multi003,multi004 and let it go, but if you have more biases than you’d like to
type, try this trick: first type files multi* > biases. An alternate command for those who
have the correct type of exposure (i.e. zero, object) in the image header would be cedlist
multi* cedtype—=zero name+ > biases. This creates a text file called “biases” which



contains a list of images that start with “multi.” Edit this file (edit biases), deleting lines
until all that is left are the names of files that really are bias frames (remember- you can check
your file “headers” for this). Then type zerocombine @biases (using the default combine
option set to “maxreject”) and it will use the contents of the file “biases” as an input list,
creating a bias frame called “Zero”. Remember this way of using “ @ ” — it will be useful
later. If you have more than one night’s worth of data, you need to be careful to change the
output bias image name for each night. or possibly create a new directory (mkdir nitel etc.
) for each night, move your images to the appropriate directory (imrename @nitelimages
nitel/ ) and do the entire bias subtraction process separately for each night.

Let’s take a look at the data now. Use implot to look at one of your quartz frames.
Using Z to zoom, or one of the windowing commands (type ? for a list of commands if you’re
lost here), find the overscan region of the frame. This is usually a strip 32 pixels wide on the
righthand side of the frame. You can tell where it is because the ADU level drops a little bit
there, especially if you have pre-flashed the chip or have a problem with scattered light.

line (row)

=

data

Byomn=0<g

Using the C key (you may have to hit it twice), note the left and right extents of the
overscan region and write them down. Also note the left and rightmost extent of your spectra
(not each individual spectrum— just the “wasted” area to either side of them all). To save
diskspace, we will be trimming the images down to their minimum sizes. Remember that
each of your aperture masks will have a different pattern of slits and possibly different trim
sizes! Look at a quartz from each of them and decide whether you want to trim them all to
the same size, or trim the data from each aperture mask separately. If you see that the area
between the slits is not flat, but rather has a noticeable shape, you may have a problem with
scattered light outside of your apertures. This can be subtracted a little later in this process,
so remember it, and do not trim your frames heavily (do trim away the overscan region).
Some data will already have the bias section entered as a keyword in the image header. Look
for it by typing imhead multi001 long—+. In that case, if you decide you want to trust it (it
is never a bad idea to check, however), you can leave the parameter biassec to be “image,”



and it will read the overscan section from the image header.

Now it’s time to delve into the parameters of the ccdred package. Again, type setinstru-
ment. It will again query you for an instrument and you should type cryocam again. You
will be confronted by a complicated-looking parameter list. Don’t panic— just type CNTRL
Z and look instead at the second “page” of parameters. These are the ones that control what
the task cedproc actually does.

We only want to subtract a bias here, so go down the parameter list and change the
parameters so it only uses the overscan and the bias frame to correct the images. Figure 2
shows how it should look. Be sure to call the zero frame the right name if you are using data
from different nights. Note the format for entering the overscan region and the trim size of
the frames. It’s not a bad idea to trim a few pixels off the top and bottom of the frame, as the
data are usually a little weird there. Remember that if you want to trim data from different
aperture masks to different sizes that you will have to run this task several times, changing
the trim section parameter for each.

When you are satisfied with the parameters, a CNTRL Z will get you out, and

cl> cedproc multi*.imh

will subtract the bias from all frames starting with “multi”. Once again, remember that
if you want to change parameters for objects of different aperture mask, or taken on different
nights, you must run ccdproc several times with appropriate changes in the parameters and
the input list. Using “ @filen” for the input list, as described above, will be useful here.
Ccdproc also reduces the data in place, so be very sure that you know what you are doing
before you let it go. Changing the parameter noproc to “yes” will allow you to make a dry
run and make sure it’s going to work. Note that ccdproc is clever enough to realize that your
bias frame needs to be overscan-corrected before it does anything else.

After your data have been bias-subtracted, use implot to take a look at a frame and make
sure it’s all right. While you are here, look carefully at the areas of the frame in between the
apertures. Is it flat, or is there a significant amount of scattered light? This is not often a
problem with cryocam data, but if you are concerned, you should read the section below on
Scattered Light before proceeding with the normalization of your data.

6 Normalization

Normalization of multislit data is a tricky process because of the strange and extreme shapes
caused by light falling through multiple slits onto one CCD frame. In general, there are two
types of normalization that need to be done. One is high spatial frequency pixel-to-pixel
response variations in the chip, and the other is relatively low spatial frequency illumination
patterns caused by the slit mask (the slit function). We can get them both out, to some
extent, by using high signal-to-noise exposures of a quartz lamp.

The quartz lamp is useful in that it has a smooth, well-behaved spectral shape that we
can easily fit and divide out, leaving only the pixel-to-pixel variations. The relatively uniform



Figure 2: Parameters of cedproc.



Figure 3: Headers for Dataset Used in these Examples

illumination of the lamp can also be used to correct for the slit function, though if you are
concerned, you may want to use dome or sky flats for this purpose as well (this is crucial for
multi-fiber data).

Before you do anything else, you will need to tell IRAF which way your spectra are ori-
ented (i.e. which dimension is the dispersion axis). To do this type

cl> setdisp *.imh dispax=2

if your data are aligned with the spectra lying along columns, and dispax=1 if they lie
along rows. Now you will probably want to move your data (if you haven’t already done
so) into separate directories for each aperture mask. Use mkdir maskl etc. to create the
directories, and imrename @mask1list maskl/ to move the proper frames there. Next,
you will need to load the packages imred and msred. The msred package contains the rest
of the tasks you will need to become familiar with in this reduction. Type help and just
take a look for a moment at what it contains in order to get oriented. From here on, I will
be drawing examples from a 4-m cryocam+multislit dataset which consists of two exposures,
along with three quartzes and three comparison exposures bracketing them in time. The
names and headers for these exposures are in Figure 3.
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6.1 Normalizing Multislit Data

At this time, the method of choice in normalizing multislit data first defines the positions and
width of each slit, and traces the “curvature” of the quartz spectrum along the dispersion
direction. A one-dimensional spectrum is determined from the average of the data in the
aperture, and is fit with a smooth function to follow the shape of the quartz spectrum. This
fit is divided into each line (or column) in the entire aperture, leaving only the pixel-to-pixel
response. Because the entire slit is divided by a single function taken from the average of the
aperture, this response also represents the relative illumination at different parts of the slit-
the slit function. This process is repeated for each different aperture, and the output frame
is used as a flat field.

In order to combat the problems caused by flexure, I hope you have taken quartzes (and
comparisons!) before and after each long exposure. In that case, you will want to create an
average quartz frame to use as the normalization for each exposure.

cl> flatcombine multi017,multi020 output—=qava combine—=average exp+ subs-
cl> flatcombine multi020,multi023 output—=qavb combine=average exp+ subs-

This will combine the appropriate quartzes to normalize the two exposures, “a” and “b”. If
you’re suddenly lost here, look again carefully at Figure 3. The frames are scaled by exposure
time, in case you changed your flat exposure time during the night. Use the combine option
“avsigclip” for three or more input frames to get rid of spurious pixel values.

If you looked at the “help” for the msred package, you will have guessed that we want to
start with the task apnormalize. Look at the parameter file first with epar apnorm. The
yes-no parameters will tell you roughly how the task works. First you find and define the
aperture positions, then trace them (that means fit the S-curvature), redefine the normaliza-
tion apertures, if you want, and finally fit the quartz shape out of the normalization. So let’s
do all of this for the first averaged quartz frame:

cl> apnorm qava flata

No, you don’t want the task to bother finding the apertures for you, and yes you do want
to edit the apertures. You are now in the basic aperture editing (apedit) mode, which is
common to all of msred “ap” tasks. You will need to be familiar with it, so take your time
now and play a little bit with setting the parameters. If you type :show (all : commands
require a carriage return) you will be shown the apedit parameters. You can reset them by
typing, for example :nsum 50, or :line 100. Single-character capital IMPLOT keys also
work in this mode for zooming, windowing etc. The first thing you should make sure of is
that the width of your slits is properly set. Use the C key to get the cursor positions that
mark the edges of a typical slit, and then use :width to make sure that the width is set to
a reasonable value. This is important if the trace is to work right. Because of defocussing
across the spectrum (a major problem with some instruments!) it is also important that you
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check different lines in the frame and decide where you want to optimize the process.

After you’ve done that, you're ready to start defining apertures. The following single-
stroke keys are useful in defining the position of the center of the slit, and the proper slit
width.

m - defines and centers an aperture nearest the cursor
<+ - moves cursor to next aperture

- - moves cursor back one aperture

. - moves cursor to nearest aperture

¢ - fits the center of an aperture

d - deletes an aperture

o - re-orders aperture numbers

1 - sets the lower (lefthand) limit of an aperture

u - sets the upper (righthand limit) of an aperture

y - sets the limits of an aperture to where the horizontal cursor crosses the edge of the
aperture

a - “ALL” toggle- does subsequent procedures on all apertures

You will want to place the aperture so the center is roughly in the center of the slit, and
the limits are about halfway down the sides (Figure 4). Again, the :width should be set to
about this width as well, and you should be careful to check the effects of defocussing across
the chip. If your aperture mask has “setup” holes in it, ignore them. When you are done,
type q to proceed. Yes, you want to trace, and you want to trace interactively. This may
take a moment, so it’s a good time to stretch your legs.

When the curvature tracing has been done, answer ”yes” to all queries (or “YES” if you
know you will want to do that operation for all apertures). You will be shown the trace and
apnorm’s first guess at a fit to it (Figure 5). This fit will be the S-curvature assigned to that
particular aperture. At this point you are in another general IRAF mode with which you will
have to become comfortable - ICFIT, which stands for interactive curve-fitting mode. When
in this mode, your job is to set the fitting parameters so that the result is a fit that you like.
Useful commands are:

:fun splined - set the fitting function to a third-order spline. Other options for the fitting
function can be found by hitting ?.

:or 5 - change the order of the fitting function

:nit 1 - iterate the fit once, throwing out deviant points (see rejection threshholds below)
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Figure 4: Quartz Apertures

:high - high rejection threshhold (in sigma of fit)

:low - low rejection threshhold (in sigma of fit)

f - refit the curve using the new parameters

d - delete individual data points

u - un-delete individual data points

s - set the sample range (will ask you to move the cursor and hit s again).
t - reset the sample range to all points

q - quit, the fit is as good as I can get it.

Other commands can be found by typing ?.

If your quartzes have good signal, the trace fit is usually pretty straightforward, showing
a curve of order 3 to 7 wandering gently across a range of not more than a pixel or two. If
your trace is very erratic, wanders across many pixels, or seems to make an abrupt jump to
another position, check and see if the signal in that quartz spectrum is low for some reason,
or if the trace has somehow jumped into a neighboring aperture. In the first case, check
the parameter nsum; increasing it may improve the curve. In the second case, tweaking the
:width parameter in the apedit mode can sometimes help. If you really can’t get it to work,
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Figure 5: Quartz Trace Fitting

a straight line passing through the center of the aperture is probably still not too horrible an
approximation (though you should check and see if you can improve on it by looking at that
particular aperture on other quartz frames).

After the initial tracing of the apertures you will be asked if you want to normalize the
apertures - answer “yes”. Then you will be asked if you want to edit or mark different
apertures sizes for the normalization apertures - usually this is not the case. Type “no” and
proceed to the fit the normalization.

After a short wait, you will find yourself again in ICFIT mode (Figure 6). This time you
will want to fit the general shape of the quartz spectrum. The order to which you should fit
your quartz spectra depends on how your quartzes were taken, and what you want your final
data to look like. Fitting a first order curve to your quartzes will allow you to remove most
of the instrumental effects of the telescope and spectrograph, leaving the quartz spectrum
itself as a residual in your data. If you have used an additional filter in taking your quartzes,
however, or if for some reason you object to introducing this residual shape into your data,
you might want to fit a higher order curve, say 5th or 6th order. Be sure not to fit too high
an order curve, since you want to be sure not to fit out any of the fringes which often occur at
the red end of the spectrum. Since multislit data are not usually flux calibrated, the choice
of what sort of low-frequency shape you want your spectra to have is yours.

For a closer look at the data and fit, you can use the capital letter cursor commands to
zoom and window the plots. As this is an even more straightforward fit, after fitting the first
couple interactively and making sure everything is in order, you can answer “NO” to whether
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Figure 6: Fitting the Quartz Spectrum

you want to do an interactive fit, and it will do the rest of the apertures on its own. Note
that this is not recommended with the trace fits, as they are more likely to have problems.

After the normalization fits are done, be sure to save the aperture data to the database
(it will query you about this.) When you emerge from apnorm, look in the magically created
directory “database” ( type dir database and you will find two files containing the aperture
definitions for your averaged quartz and for the last frame which you “apedited” - in this
case the files will be the same). If you want to go back and redo any of the “ap” tasks, this
database keeps you from having to redefine everything all over again. It also allows you to
use the aperture definitions of one frame to be used as a reference for another frame.

Now take a look at the newly-created flat with implot flata. You should be able to see
both the illumination slit function and the pixel-to-pixel variations. Note that the flat is set
to unity in between the apertures. You may also want to set areas with low quartz signal to
unity, so that you don’t add noise to your data by dividing by it. The parameter threshhold
in apnorm sets the minimum level of the normalization fit, below which the output flat is set
to unity.

To create a flat for the “b” exposure, type

cl> apnorm qavb flatb ref—=qava

Do not recenter immediately. This will set you up with the apertures for qavb exactly the
same as qava, which will save you some typing. You may, however, have to recenter anyway
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and check the widths of the apertures, and you will definitely have to retrace them. Proceed
as before to create a second flat.
Finally, normalize your data frames:

cl> imdiv multi019 flata obja
cl> imdiv multi022 flatb objb

It is important now that you take a good look at your object frames to get acquainted
with them. Display the two-dimensional images if you can, and use implot. Note which
apertures have strong object spectra within the slit, and where in the slit it lies (i.e. is the
spectrum in aperture 6, say, off to the the left of the slit? That might be useful to remember
later.) Check again the typical width of the entire slit, and this time also note the typical
width of the object within the slits. Look at the effects of defocussing— you will probably
lose some spectral coverage because of it, so get an idea how bad it is in different parts of
the chip. How flat is the background level on either side of your spectrum? Are you satisfied
with the normalization?

Because of flexure, illumination problems, and the general problem of fitting sharp edges,
apnorm sometimes creates very noticeable spikes on the edges of the apertures (Figure 7).
Using sky or dome flats to determine the slit function may help alleviate the part of the
problem due to non-uniform illumination, but still may not get rid of it completely. If you get
these spikes, you will have to decide whether you can live with them or not. If your slits are
very short and you are strapped for background (as are all of us who are greedy to observe as
many objects as possible with one mask!), it may make fitting an accurate background level
difficult. Remember, however, that these spikes are not “covering” good background area,
but rather lie in areas where the slit is falling away sharply, so you’re not losing anything
useful.

If you decide that you would rather not have any illumination correction at all (that is
the culprit in forming those spikes), there is an alternative procedure which will produce a
flat which consists of only the pixel-to-pixel variations. Load the package imred.generic and
epar flat1d. This task fits a curve to each individual line or column of the frame and divides
by the fit. Because it does not divide by a “single” fit, as apnorm does, the fit conforms to
the shape of the spectrum even on the steep sides of the apertures. This means you don’t get
spikes, but you also don’t normalize the slit function.

Edit the parameters of flat1ld so that it will fit a 1-6 order function (similar to the nor-
malization fit of apnorm). If you set dispax=2, then set axis=2 as well. Minflat plays the
same role as threshhold does in apnorm.

cl> flatld qava flata inter=no &

If you would rather look at a few of the fits interactively, keep inter=yes and don’t put
it in the background. The task with prompt you for a line number- choose something in the
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Figure 7: Normalized Object Apertures

middle of the frame. You are now in ICFIT, and can proceed as usual. After fitting that line,
type q and you will be prompted for another line which you might like to fit. Please don’
wear yourself out by trying to look at every line, but see if you can find examples on the edges
of the slits to illustrate why apnorm causes problems by dividing the entire aperture by a
single quartz spectrum. When you are done, type q instead of a line number, and the task
will take the last fitting parameters you set and will fit every line in the image. When it is
done, divide your data by this new flat and see how different it is.

6.2 Scattered Light

Another process which you might need to consider is the subtraction of scattered light outside
of the slits. This is not the “overflow” from each individual slit (there is currently no way to
deal with that properly) but rather a large-scale pattern of additive light which you may wish
to subtract. If the signal between and outside of your slits is not flat, but rather shows broad
variations, you should use the task apscatter to remove it. This is rarely (if ever) a problem
with cryocam data, and most users will not need to worry about it. If you do have significant
scattered light, however, you should be sure to remove it before you do the normalization. If
you have already flattened your data with apnorm, this means going back to your unflattened
data, subtracting the scattered light from all of your frames, and recalculating the flat fields.
Consider your first pass through apnorm as an educational foray which will make subsequent
reductions all the more simple.
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Apscatter is organized very similarly to apnorm. It allows you to define and trace the
apertures (if you have not already done so), and then fit the scattered light and subtract
it. Because the scattered light is a two-dimensional function, however, it does this fit in two
stages- first between the slits, and then along the dispersion direction.

If, for example, one of your object frames seems to warrant this correction, start with:

cl> apscatter multi019 ref=qava

This will put you in apedit mode with the apertures defined as they were in your quartz
frame. Do recenter the apertures, but don’t trace them. You do want to subtract the scattered
light, as well as smooth and fit it interactively. The next plot you will face shows the slit
profiles, and the task’s first attempt at fitting a smooth curve to the scattered light. This is
ICFIT mode, and you can proceed as before. When you have set the fitting parameters, type
q. You will be prompted to quit for good, to examine another line, or to change the buffer.
The buffer is the number of pixels from the edge of an aperture that the task will ignore in
the fit. Try setting it to a few pixels and experiment. Also check different lines to make sure
that defocussing is not causing you problems. Remember that this entire process is only to
set the fitting parameters and buffer size.

When you are done with fitting the scattered light in that direction, you are asked to fit
it in the dispersion direction as well. Again, this is ICFIT mode, and the normal options
apply. When you have set the fitting parameters in that direction, apscatter will calculate
the smooth scattered light image and subtract it from your data. If you are curious or careful,
the scattered light pattern can be output into the image name specified by scatter (use epar
to set it.

7 Extraction

Now that instrumental effects are removed from your data, it is time to work on getting some
useful information out of it. In almost all multislit applications, you will want to extract a
one-dimensional spectrum from each slit, and in many cases subtract a local background from
it. This can all be done within the msred package using the “ap” tasks. The basic procedure
should sound familiar to you: 1) define the aperture centers, widths and curvatures, 2) set
the background regions, 3) sum the data within the aperture, subtracting the background if
necessary. You have already had a taste of these tasks with apnorm, so the rest should come
easily.

There are several different ways to use these tasks as they are all interconnected. I prefer
to enter the “apextract” tasks through the task apedit and access the other tasks while
within it. First, though, we should take a look at the parameters of each of the tasks.

Start with epar apedit. These parameters deal with finding and centering the apertures
correctly. You may want to change the width parameter to reflect the width (FWHM) of
the object within the slit, rather than the width of the entire slit. These parameters can also
be changed while running the task.
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The parameters of interest in apdefault deal with the background subtraction default
parameters. Here it is a good idea to set the default background limits to reasonable values- a
slit 21 pixels wide with an object in the center seven pixels across will have a background set
at [-10:-4,4:10], for example. The background fitting parameters deserve some thought. If you
anticipate having many pixels’ worth of background to fit in each slit, you can breathe easily,
but for many slitlet observations, the background subtraction is the limiting factor in the
quality of the data. If you have the “spikes” referred to above in the discussion of apnorm
or if you think you will have to push your background close to the edge of your slit, it might
help to set the rejection parameters to lower values (try 1.5-2 to start) and nit=1. The
narrower rejection ranges will help keep your background determination from being affected
if the background region happens to slip off the edge of the aperture, onto the object, or on
one of the “spikes”. Again, unless you have many pixels to fit in your background, you will
want order=1 and nav=1 as well. If you want to experiment while you are looking at the
data, these can also be set interactively.

The parameters of apsum show you what the task will ultimately do to your data. They
can also be set interactively later, so take a look now to see what your options are, and we’ll
come back to them.

7.1 Defining the Apertures

Actually, you have already done most of this when you defined the apertures for your quartzes,
but there are a few little changes that must be made before we can extract the spectra.

We begin with the first exposure but you should always start with the best of your expo-
sures to get a feel for the data. If you can have the frame simultaneously displayed on your
terminal (i.e. on your Sun workstation), do so.

cl> apedit obja ref=qava

We use the apertures we’ve already defined for qava as a starting point. Don’t bother to
recenter (it’s always best to be distrustful of such things). This task puts you in the now-
familiar apedit mode (Figure 8). Check over the aperture definitions, recentering them this
time on the objects in the slits. If you have difficulty finding the objects, set :num to a higher
number, summing more dispersion lines. Also move :line around the frame, looking at the
defocussing and making sure that the aperture center stays on the object. If necessary, you
can consult your displayed image of the frame to see where the objects are in the slits.

The widths of the apertures should be set (using y, 1 or u as before) according to whether
you need to get as much signal as you can from the object, regardless of adding extra noise
from summing data in the wings, or whether you want only to sum over the higher signal-to-
noise peak.

In most cases, it is a good idea to keep the curvature traces the same as for the quartzes.
The quartzes should have much better signal to noise than objects in the slit, and the traces
should be identical. The traces are defined relative to the position of the object, so they will
work correctly even if you have moved the aperture position. If for some reason you really do

19



Figure 8: Apertures for the Objects

wish to trace the objects themselves, be sure that the parameter :width is set appropriately.
If you have had to set :nsum to a higher number in order to get good signal on the objects
within the slits, you will have to change a couple of the aptrace parameters. Type :aptrace
to edit the parameter list, and change both nsum and step to whatever you chose nsum in
apedit to be. These numbers control the number of lines summed to make a datapoint in
the trace fit, and the spacing of these points. In general, these values should be the same as
the number of lines you have to sum to get a good object profile. Typing CNTRL Z will
get you back into the apedit mode; then type t. This will trace and fit the aperture in the
same way that apnorm does.

7.2 Background Subtraction for Multislits

Now that you have defined the apertures’ positions, widths and curvatures, you will also need
to define the background level that you will eventually wish to subtract. While still in apedit
mode, move the cursor to the first aperture and type b. This puts you into an ICFIT mode
to fit the background (Figure 9). Using the w and e keys will let you set the lower left and
upper right edges of a viewing window. Undoubtedly, the sample areas will be wrong, so type
t to clear them, and reset them using s. Be sure that while within the apedit mode you have
set nsum to a number large enough to get good signal on the object profile, so you can see
what you’re doing. It is also a good, though depressing, idea to look at other different lines
across the frame. Again, this will help you gauge the effects of defocussing. Typing f will refit
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Figure 9: Background Subtraction Fit

the background level. Play with it until it’s as good as you can get. Additional commands
are available by typing ?. Exit back into apedit mode by typing q. Repeat this for each
aperture. Remember that at this point you are only defining the aperture and background
parameters, so you can go back and re-do them as many times as you need.

7.3 Extracting the Spectra

The apsum parameters are set by typing :apsum in the apedit mode. Here you can choose
whether you want to subtract an adjacent background or not, and whether you want the
background fit to the ICFIT parameters you have just set, or just have the area marked as
background averaged. Figure 10 shows the parameter list set up so that a fitted background
is subtracted, and the data are summed using profile weighting.

There are two options for weighting the data you are summing, profile weighting and
variance weighting. It is advisable to avoid variance weighting and stick with profile weighting
for now.

After you have set up the apsum parameters, exit back to the apedit mode by typing
CNTRL Z. To extract all of the spectra at one time, type a e. You will be asked for an
output file name, and possibly a sky file name (we will be using neta, netb and skya, skyb
in this example) . These files are two-dimensional IRAF images in multislit format, and will
have a .ms appended to their names. These files have one line per aperture spectrum, i.e.
neta.ms has ten lines, one for each aperture, and implotting line 1 will plot the extracted
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Figure 10: Parameter List for Apsum
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spectrum from aperture 1. One problem with this part of the task is that if your output
image already exists, it will not ask you for another output name, but will rather throw your
newly extracted spectra into the ether and you will have to extract it all over again.

There is a parameter called skyextract used when subtracting a background, that outputs
this background spectrum into a separate output file so that you can go back and reexamine
it. This option is worth playing with. Once output, the background can be added back
into the data, and then a smoothed background subtracted. Smoothing the background and
resubtracting it does seem to decrease the noise in the output spectrum, but also broadens
strong emission lines in the background spectrum, creating large residuals in the wings of
such lines. Such an experiment might be done in the following way:

1) Extract your data setting skyextract = yes, outputting the sky spectra into skya.ms.
2) Add the sky back into the extracted spectra:
cl> imarith neta.ms + skya.ms noskysub.ms

3) Smooth the sky spectra. Boxcar, in the package images executes a running average
box smooth on a two-dimensional image. In order to smooth the multispec format image,
you must remember to set the y-dimension box size equal to unity. Otherwise the spectra
will be smoothed into one another. The x-dimension box size can be set approximately equal
to a resolution element of your spectra.

cl> box skya.ms xbox=4 ybox=1 skysmooth.ms
4) Subtract new, smoothed sky:
cl> imarith noskysub.ms - skysmooth.ms newneta.ms

Again, as the quality of the background subtraction is often the limiting factor in the qual-
ity of the reduced data (especially in wavelength regions where the night sky lines are strong
and closely-spaced), experimenting a little with different methods is probably worthwhile.

Repeat this entire process for each of your object frames, using the appropriate quartz
frame as a reference. Different exposures through the same masks may have slightly different
centers due to flexure, or if you “tweaked” the telescope position between exposures. Seeing
or focus changes may change the width of the object features and your background definitions.
The traces will also change from exposure to exposure but, remember, you already caught
that when you traced the appropriate quartz.
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8 Wavelength Calibration

The wavelength calibration of multi-object spectra at this point is, besides some changes
in bookkeeping, identical with that of normal one-dimensional spectra. In this guide, it is
assumed that you have taken one or several comparison spectra which can be used as is to
calibrate your data.

8.1 Creating the Calibration Spectra

It is very important that the comparison spectra used to calibrate each object spectra be
extracted in exactly the same way as the object spectra. In our example, comparison spectra
were taken before and after each exposure. We want to use two comparisons to determine
the wavelength calibration for each each of two exposures, so we need to create four sets of
comparison spectra.

This can be done quite easily using apedit the same way we used it before. First, though,
epar apsum and change background to none, as comparisons, of course, have no back-
ground. Then:

cl> apedit multi018 ref—=obja output=compal

Do NOT recenter, do not change a thing! Instead, type a e and extract the comparison
spectra using identical apertures and traces as the object spectrum. In this example, the
output .ms frame will be called compal. The a tells us that it is extracted like exposure
a, and the 1 denotes that it is the first of the two comparisons. If you wish to look at each
comparison spectrum, OK, but you might want to answer “NO” when it asks you if you’d
like to review each of the comparison spectra. Don’t bother to save the apertures to the
database— they are the same as for obja.

Next, do the same for the other comparison you want to use for calibrating obja.

cl> apedit multi021 ref—=obja output=compa2

Next, do the same for the comparisons you wish to use for the second exposure:

cl> apedit multi021 ref=objb output=compbl

cl> apedit multi024 ref=objb output=compb2

Note that compa2 and compbl are derived from the same frame, but with different
aperture definitions and traces. If you have a lot of frames, you can do these in the back-

ground.

cl> apsum multi024 ref=objb out—=compb2 rec- tra- back—=none interac- &
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It is usually a good idea, however, to spot check a few of the spectra to make sure that
nothing has gone awry. When you have created all of the comparison .ms images that you
need, pat yourself on the back. You have finished with the apextract tasks.

8.2 Determining the Wavelength Calibrations

First, display a two-dimensional comparison frame (e.g. multi018) and identify which aper-
ture is which (don’t forget that you have ignored any set-up holes). Then, by looking at the
emission lines, write down the aperture numbers in order, starting with the one that is shifted
the furthest towards the bottom of the frame. This is the order in which you will want to
determine the wavelength calibrations; you want the minimum shift in wavelength between
one aperture and the next.

The task identify is a complex task which allows you to identify emission lines in your
comparison spectra, and then fit a smooth function of wavelength versus pixel number. This
fit is the dispersion correction, also called wavelength calibration. The fit parameters are then
stored in a database and subsequent tasks use the fit to correct your spectra to the proper
wavelengths. If you have used identify before, rest assured (or be warned) that the version
you will use now is identical to the task in the onedspec package, etc. If you have not used
it before, it is probably worthwhile to get a hardcopy of the help pages for the task (help
identify | Iprint) and keep them on hand.

Start by using the editor to create an “@” file called identin which contains a list of the
image lines in your first comparison .ms file. Write down the lines in order of their relative
shift (i.e. the order you wrote down after examining the two-dimensional comparison frame).
For example, it might look like this:

compal.ms[* 8]
compal.ms[*,9]
compal.ms[*,10]
compal.ms[*,6]
compal.ms[*4]
compal.ms[*,2]
compal.ms[*,1]
compal.ms[*,3]
compal.ms[*,7]
compal.ms[*,5]

Then type:
cl> identify @ident
You will be shown a plot of the first comparison spectrum in your list (in this case, the

8th aperture). You now need to identify a few of the brightest lines, (at least three, though
four or five well-spaced lines would be better). Mark them by putting the cursor close to their
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Figure 11: He-Ne-Ar Calibration Spectrum

peaks, and type m. You will be prompted to enter the wavelengths. If you make a mistake,
d will delete a line, and u will let you change the assigned wavelength. When you have a
few lines marked, type 1. Identify will now fit a straight line to your data (not a bad first
approximation), and, using a table of comparison lamp values, attempt to identify as many
other lines if your spectrum as it can. The default wavelength tables are for He-Ne-Ar lamps.
If you are using another type of arc lamp, you will have to change the identify parameter
coordlist to something more appropriate. Check through the standard options by page
onedstds$README and see if any of the lists are appropriate for your data. Then you
can change the parameter coordlist to match. If you don’t think any of the standard options
will work for your instrument, it is best to ask for the help of someone who knows what other
wavelength tables may be available.

Hopefully, while you’ve read this, identify has been able to mark a bunch of new lines for
you (Figure 11). Now you need to check and make sure that it did it all right, and see if the
dispersion correction fit is good. Typing f will get you into ICFIT and display the residual
(data - fit) versus pixel number (Figure 12). If the residuals look like they follow some higher
order function, you can increase the order with :or. It is usually not necessary or advisable
to increase the order to more than about 4. Typing f again will re-fit the data with the new
parameters. Notice that the standard deviation of the residuals is in the graphics header.

At this point, you need to fiddle around with the data until you get a wavelength solution
which you like. A few useful keystrokes are:
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Figure 12: Fitting the Wavelength Solution

d - delete a point

u - undelete a point

¢ - move cursor to the nearest line (for identifying problem lines)
1 - display the non-linear part of the fit (Figure 13)

j - display the fit residuals

q - exit from ICFIT mode

? - more information on ICFIT commands

Note that if you delete a line, it is removed from the line list for all subsequent fits (that
means the rest of your apertures, as well). If you want to get it back, you must start over

again with 1.
It is also very useful to examine the individual lines, in order to weed out blends, low

signal peaks, and misidentifications. Get out of ICFIT mode (type q) and you’ll be shown
the comparison spectrum again. I usually like to step through each of the lines in “zoom”
mode to make sure that there are no problems. Some useful commands in this mode are:

<+ - move cursor to next line
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Figure 13: Non-linear Component of the Fit

- - move cursor to previous line

d - delete a line

m - mark a line

u - change the wavelength assignment of a line
Z - zoom

p - un-zoom (pan)

Be sure that you have enough lines, and that the lines are spaced throughout the entire
spectrum. Fitting a high-order function and not having enough lines at the endpoints to
“tie it down” will cause you problems. Also keep an eye out for a “solution not monotonic”
message which may flash across the bottom of your graphics window. These are conditions
you should be aware of if you’re being careful anyway, but the error messages are fleeting.
When you’re satisfied with the wavelength solution, type q and write it all to the database.

Now, because you started identify with an “@” file, you will immediately be shown the
next spectrum in your list— surmounted by the fit you have just determined. Now the fits
to individual apertures should be very similar except for a zero-point shift due to the shift
in the slit positions on the mask. In many cases, you can save a lot of time by simply trying
this. Find a strong, isolated line in the center of your spectrum, put the cursor on it and
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type s. You will be prompted for its wavelength, and then the task will shift the solution
so it lines up with the new data. Proceed as you did before, typing f to calculate a new fit.
Do be cautious- sometimes rather subtle problems can creep in at this point. The non-linear
portion of your fit should look very similar to that of your first aperture and the RMS of the
residuals should also be similar.

Shifting the solution like this works most of the time when the shift is not large, but it can
sometimes get confused and misidentify lines and really cause a mess. When that happens,
get out of ICFIT mode, and type i to reinitialize and delete all of the lines, and start from
scratch. This can be a long procedure if you have many apertures on one frame. Hang in
there- you only have to do it once for each aperture.

Once you have wavelength solutions for one exposure through each of the apertures, it is
quite simple to use these solutions to calibrate the rest of the comparison spectra. The task
msreidentify uses the database information for each of the apertures to fit the wavelength
solution to each subsequent exposure. This only works if you have extracted each comparison
such that the apertures are in the same order in the .ms frame, but you should be doing that
anyway.

cl> msreidentify compal.ms compa2.ms
cl> msreidentify compa2.ms compbl.ms
cl> msreidentify compbl.ms compb2.ms

You should now have solutions for all of your comparison spectra entered in your database.

At this point, again, caution is advised. msreidentify is pretty good at refitting the
wavelength solutions properly, but it can occasionally make big mistakes. It is advisable to
go back into identify and at least glance at each of the solutions to make sure that there are
no gross errors (when errors occur in msreidentify they are usually very obvious).

8.3 Calibrating the Spectra

Before you can apply these hard-won wavelength solutions to your data, you need to specify
which comparisons you want to use and in what combination. The task refspectra is a
complicated task which does a very simple thing- it goes into the header of your object frame
and creates two new header keywords: REFSPEC1 and REFSPEC2. These keywords contain
the names of the comparison spectra you want to use, and their relative weights. If you only
have one comparison spectrum, it only creates REFSPECI.

Choosing the relative weights can be a complicated business, and for that I refer you to the
help pages for refspectra. The most likely choices will be either to average two comparisons,
or to do a linear interpolation with respect to some parameter, say UT. In our current ex-
ample, averaging is sufficient since the comparison exposures are very short compared to the
object exposures, and the comparisons were taken immediately before and after each object
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exposure. So:
cl> refspec neta.ms refer—=compa* select—=average

Refspec confirms that the average of the comparison spectra compal and compa2 will be
used. (Now do you see why we chose the names of the comparison spectra like that?) Likewise:

cl> refspec netb.ms refer—compb* select=average

If you would prefer to use the interpolation option, you must be sure that the UT keyword
in your image header denotes the middle of the exposure, not the beginning (as KPNO headers
do!). If you try to interpolate using the beginning of the exposures, the first comparison, since
it usually has a much shorter exposure time than the object exposure, will be weighted much
too heavily. Again, if you want to use one of the more complicated options, you should
carefully read the documentation on refspectra. Also see the task setairmass. If all of
this is too daunting, yet another option is to use the task imhedit to manually create the
keywords REFSPEC1 and REFSPEC2, bypassing refspectra entirely.

You are now finally ready to assign the wavelength calibrations to your object data. The
task which does this for multispec data is called msdispcor. Look at the parameters for
this task using epar (Figure 14) and think a moment about the final form you want your
data to take. In most cases, you will want all of the apertures to have the same number
of angstroms per pixel, but different starting wavelengths. You might also want all of the
different exposures of a specific aperture to have the same starting wavelength, to make
combining them easier. If you are planning to cross-correlate your data later, you may also
want to bin your data logarithmically. There are also options for summing or averaging all
of the apertures together, or forcing them all to have exactly the same dispersion correction.
This last can make subsequent subtraction and cleaning of sky emission and residuals much
easier, and should be kept in mind. You can always rebin the data, but you really want to
minimize the number of times you do it.

In our example, we want all of the spectra to have the same angstroms per pixel, but each
individual aperture will have its own starting wavelength. We also want the two exposures,
to have the same starting wavelength for each of the apertures. To do the first, we set the
parameter dw equal to the wavelength/pixel you want. If you are not sure what you would
like, do a dry run of msdispcor by setting the parameter listonly to yes and setting the
other parameters so that the wavelength dispersion is chosen freely:

cl> msdispcor neta.ms test dw=INDEF same- glob- list+
This will show you the default wavelength solutions that it has chosen for each of the
apertures. In this example, a value of 3.2 angstroms per pixel was chosen. Set dw to this

number to force all spectra to have this value.
To force msdispcor to make each aperture have the same solution (wl and dw) in each
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Figure 14: Msdispcor Parameters
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exposure, set the parameter global to yes. If you want all apertures to have the exactly the

same wavelength correction, set the parameter samedisp to yes as well.
Then:

cl> msdispcor neta.ms,netb.ms fina.ms,finb.ms

Your data are now dispersion-corrected. You are almost done!

9 Combining, Cleaning and Examining Data

This section suggests a few of the options available to you in IRAF for combining your multislit
data in different ways, cleaning them and for plotting and displaying your data. Since you
have made it this far, you are now an IRAF data-reductions expert, and should be able to
figure out these tasks without a lot more fuss. As always, it is a good idea to epar a task
before running it, and the help pages are all online.

Combining data from several exposures is very simple if the spectra are in multispec for-
mat, and you have been careful to make sure that the starting wavelength and the wavelength-
per-pixel is the same for each individual aperture. You can simply imsum, imarith or
imcombine the two-dimensional frames and combine each of the apertures simultaneously.
These tasks all have different options and capabilities, so you should have a look at them
before deciding which you would like to use.

There are a few useful tasks which might help in cleaning your data of cosmic rays and
the residuals from poor background subtraction. The task lineclean in the images package
can be used for both. This task fits each line of the multispec format spectra with a smooth
curve, and replaces any deviant data points by the fit value. To remove cosmic rays, try
fitting your data with a very high (say 200-250) order function. Most cosmic ray events
(depending on the type of CCD used) and bad pixels are single-pixel events, whereas true
spectral features are resolved. Choosing the order of the fit to be 1/2 or 1/3 of the number
of pixels in the spectrum will help in weeding out these single-pixel events. Play around
with different spectra and with setting the high and low rejection parameters until you find
a combination that you feel safe with (after all, you don’t want to reject any real emission
lines). Care should be used with this process— even if an entire line is not rejected, it can
occasionally change the shape of sharp-but-still-resolved emission features. If your data have
been rebinned or smoothed, cosmic rays may be broadened too much to be rejected by this
method. To avoid this, cleaning the data before the wavelength calibration is performed is
suggested. It is recommended that you always do this process interactively, as well.

If your background subtraction has left you with unsightly night sky emission line residu-
als, lineclean can be used to remove some of them as well. This is much simpler if your data
are binned so that all of the apertures have the same starting wavelength. Run lineclean on
your multispec format image, and take a look at the line which has the worst-looking residu-
als. Set the fit sample ( type t to reinitialize it, and then s) so that it includes only pixels in
and surrounding these bad areas. You will have to experiment to see how wide these areas
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should be, but they usually do not have to be too much wider than the actual residual. Fit
these areas to a low-order curve; the worst of the night sky residuals will be discarded. Note
that lineclean does not read the wavelength solution parameters from the image header, so
you might want to note at which pixels you expect the prominent night sky lines to cause
you problems. Once you have set the sample areas the way you want them, the task will use
the same ones for each aperture— that is why having the same wavelength correction for each
aperture is important here.

Plotting your data is also possible with a plethora of tasks. The onedspec task splot is
a very powerful spectrum display and edit task, which allows you to do spectrum arithmetic,
smoothing, pixel editing, measure line positions and equivalent widths, and lots more. Again,
you can use this task on multi-spec format frames— it will prompt you for a line number.
There is also a plotting task for multispec format frames called specplot. This task plots
all of the spectra on a single page, allowing you to easily compare them. If you wish to con-
vert multispec format files into individual onedspec images, you can use the task msselect.
To create a one-dimensional spectrum of the fifth aperture of the multispec format image
fina.ms:

cl> msselect fina ap5 5
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A Outline of Multislit Reductions

I. Getting Started

1. Read in data from tape using rfits, rcamera.

I1. Bias Subtraction

1. Combine bias frames with zerocombine
2. Subtract biases and trim images using cedproc

3. Inspect frames for scattered light. If necessary, subtract using apscatter.

ITI. Normalization

1. Set dispersion axis using setdisp
2. Organize data into separate directories using imrename, imcopy
3. Combine quartzes using flatcombine

4. Create normalization flats using apnorm: define, trace and normalize the quartz spec-
tra.

5. Flatten data using imdivide
6. Inspect data using implot

7. Alternative option: flat1d

IV. Extraction

1. Check all apextract parameters

2. Use quartz apertures as references in apedit
3. Fit background regions

4. Extract spectra

5. Alternative: extract sky as separate spectra, smooth and subtract from data
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V. Wavelength Calibration

1. Extract comparison spectra, making sure to use the same aperture and trace definitions
as your object spectra

2. Order spectra with respect to starting wavelength
3. Calibrate first aperture in list using identify

4. Calibrate remaining apertures within identify using the s (shift) key and checking each
solution

5. Calibrate remaining comparison exposures using reidentify
6. Assign comparisons to each data frame using refspectra

7. Calculate dispersion solution for each aperture using msdispcor

VI. Combining, Cleaning and Examining Data

1. Combine data using imcombine
2. Clean data using lineclean
3. Plot data using splot or specplot

4. Extract data to onedspec format using msselect
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