
CL Programmer’s Manual

Elwood Downey
Douglas Tody

George H. Jacoby

Kitt Peak National Observatory*
December 1982

(revised September 1983)

ABSTRACT

This document serves as a programmer’s manual for the IRAF Command
Language version 1.0. CL tasks, packages, parameter files, modes, expressions,
statements, abbreviations, environment variables, command logging, error han-
dling and directives are discussed. The special CL parameters are listed. A
example of a complete CL callable program is given.

This manual is a programmer’s guide, not a user’s guide or a technical
specification of the CL. Information about other programming tools within the
IRAF system, such as the SPP language and compiler and the program inter-
face, is given only to the extent required to introduce the examples.

NOTE: Somewhat out of date, but still useful.

*Kitt Peak National Observatory is operated by the Association of Universities for Research in Astronomy, Inc. under
contract with the National Science Foundation.

Contents

1. Introduction .. 1

2. Terminology.. 1
2.1. Physical and Logical Tasks, Scripts.. 2
2.2. Packages.. 2

3. Parameter Files .. 2
3.1. Location and Name of Parameter Files... 3
3.2. Parameter File Format... 3

3.2.1. name .. 3
3.2.2. type .. 3
3.2.3. mode .. 4
3.2.4. value .. 5
3.2.5. minimum and maximum.. 5
3.2.6. prompt.. 5

4. Modes .. 6
4.1. Determining Modes... 6
4.2. Setting and Changing Modes .. 6
4.3. Recommended Mode Settings... 7

5. Expressions ... 7
5.1. Constants... 7
5.2. Parameter References .. 8
5.3. Intrinsic Functions... 8
5.4. Operators... 9

6. Statements... 10
6.1. Assignment Statement... 10
6.2. Commands .. 10

6.2.1. Command Arguments .. 10
6.2.2. Pipes and Redirections... 11

6.3. Immediate Statement... 11
6.4. Flow Control ... 11
6.5. Abbreviations .. 12

7. Environment ... 12

8. Log File ... 12

9. Error Handling .. 13

10. CL Initialization ... 13

11. CL Directives.. 13
11.1. bye .. 14
11.2. cache lt [, lt2, ...] .. 14
11.3. cl.. 14
11.4. keep... 14
11.5. lparam lt [, lt2, ...] ... 14
11.6. package packname.. 14

- 2 -

11.7. redefine [lt1, lt2, ...] lt = pt ... 15
11.8. set [name = value].. 15
11.9. task [lt1, lt2, ...] lt = pt .. 15
11.10. update lt [, lt2, ...].. 15
11.11. version .. 15
11.12. ? and ?? .. 15

12. CL Parameters ... 15

13. An Example .. 16

CL Programmer’s Manual

Elwood Downey
Douglas Tody

George H. Jacoby

Kitt Peak National Observatory*
December 1982

(revised September 1983)

1. Introduction
The Command Language, or CL, serves as a command and runtime supportive interface

between the user at his computer terminal and the application programs he is executing. The
user types his commands to the CL and it does whatever task and file manipulations are neces-
sary to carry out the commands.

The user and the applications task do not communicate directly; they communicate only
through the CL. Once started, a task requests parameters by name from the CL and the CL
responds with the value of the parameter. To get that value, the CL may have had to read a
parameter file, query the user, do range checking, extract a value from a command line or per-
form other actions.

All CL/task communications take place via an interprocess communications link between
the CL process and the process containing the applications task. Standard input, output, error,
and plotting channels are multiplexed on this link and managed by the CL. The CL process and
the applications package process execute concurrently.

This arrangement relieves each new application program from having to provide user inter-
face functions that are often rewritten directly each time, such as command line parsing, com-
mand and parameter abbreviations, and levels of interaction to accommodate both novice and
experienced users. In addition, the CL provides a common environment for running all tasks
with services such as executing programs with their input and output redirected to files or to
other programs, managing parameters for each command, handling lists of values in lieu of a
simple parameter, logical device and file name assignments, and help facilities. The CL is a
simple programming language in its own right, with conditional and repetitive command execu-
tion, parameter expressions and a calculator.

While intended to support scientific reduction and analysis applications at Kitt Peak and
elsewhere, the CL can serve any project that involves running programs as commands with
arguments. Every effort has been made to make the CL as portable as possible. The link
between the CL and the task it is running is character oriented and allows the task to to be run
directly without any support from the CL if desired. This link may be simulated by any pro-
gram that wants to run as a task under the control of the CL. However, any task written in the
SPP language (which is Fortran based) will automatically include all the i/o facilities required to
interface to the CL.

2. Terminology
This section defines most of the terminology associated with the CL. Words in boldface

are part of the actual terminology of the CL. Those in italics are more descriptive in nature and
serve only to name a representative item.

*Kitt Peak National Observatory is operated by the Association of Universities for Research in Astronomy,
Inc. under contract with the National Science Foundation.

- 2 -

2.1. Physical and Logical Tasks, Scripts
A task runnable under the CL is a file containing either the executable program itself, or a

text file containing a script written in the CL language. Either of these is referred to as a physi-
cal task since they are true files on the host computer. The executable form consists of one or
more logical tasks but the script file is always considered exactly one logical task. The general
terms command and program refer to one of these logical tasks. In order to know just how to
go about running the command, the CL has a "task" declaration that indicates in which file the
task resides, and whether it is in an executable or script form. Once declared, the logical task
commands are used the same way regardless of whether they reside in an executable object file
or a script.

In order to manage itself, there are a few commands that the CL does itself, such as the
"task" command mentioned above. These built-in commands are referred to as CL directives,
but only as a means of classifying them as a group. They act and are used very much like regu-
lar commands. In this way, they have the same syntax rules and their diagnostics work in the
same fashion. Since they are built into the CL program itself to achieve intimate knowledge of
its internal data structures or simply to increase efficiency, the set of directives is not extensible
by the user.

Thus, there are a variety of ways a command may get executed. It is no accident that
there is often no easy way to tell how a command is implemented.

2.2. Packages
Ostensibly, tasks are grouped into packages. This provides a logical framework to organize

a large body of commands in a large system and also serves to address the problem of
redefinitions. The CL directives and a few utility programs are located in the root package,
called clpackage, and is always present when the CL starts up. Some of the commands in the
root define more packages when run. They are script tasks that define a package and some tasks
in that package. By convention, the name of the package defined by a script, the logical task
and the script physical task file name are all the same.

Any package defined to the CL may become the current package. The prompt issued by
the CL includes the first two characters of the current package. When a command is typed to
the CL, it looks in the tasks of the current package first, then through all tasks in lower pack-
ages towards the root clpackage for the logical task with the given name. Tasks defined in pack-
ages defined farther away from the root are searched last. This circular search path provides
some measure of control over command scope.

Wherever a task name is expected in the CL syntax, the package may be explicitly
specified in the form package.task so that only tasks defined in that specific package will be
considered in the search for the given logical task name. This form allows package names
farther away from the root than the current package to be accessed. It also provides an unambi-
guous way to reference a task when the task name appears in more than one loaded package. If
the name of a loaded package itself is given as a command, then it simply becomes the current
package (see the package directive in §12).

3. Parameter Files
A separate file, the parameter file, may exist for each logical task. It contains a descrip-

tion of each of the parameters used by the task that should be known and managed by the CL.
(These are not the same as variables declared in the source program for the task.) The parameter
files are the permanent record of task parameters. When a parameter value is permanently
changed, as with an assignment or when in learn mode, the CL makes a local copy of the
parameter file with the new value. Thus, running tasks imply CL reads and writes to parameter
files as well as execution of the task.

- 3 -

A logical task need not have a parameter file. If a task makes a request to the CL for a
parameter and the CL knows the task has no parameter file a fake query for the the parameter
will be issued by name (see §4 for more on queries). All of the range, prompt, learning and
type checking advantages of real parameters will be lost, however. Thus, a parameter reference
by a task that does not have a parameter file at all is not considered an error. This is different
than a reference to a nonexistent parameter by a task that does have a parameter file, which is an
error.

3.1. Location and Name of Parameter Files
The parameter file for a logical task may be in two places. The CL first searches the

uparm directory, then the directory containing the physical task. All physical tasks for a pack-
age, including the script task that defines it, are usually in one directory, often referred to as the
package directory.

Uparm is an environmental entry used by the CL when accessing parameter files. If it
does not exist, the current directory is used. Uparm may either be another environmental refer-
ence to a directory or be in host-dependent format (see environment, §8).

The names of parameter files written out, either to uparm or to the current directory, are
formed by concatenating the first two and final characters of the package name, an underscore,
the name of the logical task, and the extension ".par". For example, when the parameter file for
a task txyz in package pxyz is written, it is named pxz txyz.par. The package prefix is
prepended to avoid file name conflicts if two tasks in different packages happen to have the
same name. Since local copies have the package prefix, the CL looks for them before ones
without the package prefix.

3.2. Parameter File Format
The parameter file for a logical task consists of comments, blank lines, and parameter

declarations. These may appear in any desired order. Comment lines are those that begin with
the sharp character, #, and signal that it and all remaining characters on that line should be
ignored. The maximum line length is 132 characters.

Parameter declarations within the parameter file take the form

name, type, mode, value, minimum, maximum, prompt

where all fields from value on are optional. The comma and the end of the line itself both serve
as a field delimiter and thus a comma is not necessary after the last field, whatever it is.

3.2.1. name
This is the name of the parameter. There is no length limit other than the overall line

length limit consideration. This is the name by which the parameter will be known to the task
and to the CL. It must begin with a letter or a dollar sign, $, but the remaining characters may
be any combination of letters, numbers, underscore, , and dollar, $. Casual use of $ is not
recommended, however, as it is used to make environment references (see §8).

3.2.2. type
The type field indicates how the parameter is to be stored. It also implies some informa-

tion about what values are acceptable and how they are entered, as discussed below under value.

- 4 -

code meaning

b boolean
i integer
r real
s string
f or fxx file name
struct structure
gcur graphics cursor
imcur image cursor

The codes b, i and r indicate the usual boolean, integer and real types. They are discussed
further in the value section, below.

There are several types that manipulate character strings. The characters themselves may
be anything from the ASCII set. The type s is the simplest and is an ordinary character string.
It is typically used for names, flags and messages.

The f type is like s except that it is limited to legal file names on the host operating sys-
tem, after possible environment substitution. The f may optionally be followed by any reason-
able combination of the characters e, n, r, or w. These indicate that checks should be made of
the file name before it is used that it exists, does not exist, that it exists and is readable and that
it exists and is writable, respectively. Struct is also like s but its value is the entire next line of
the parameter file.

Gcur and imcur are similar to struct but are expected to be of the form "x y char" to be
usable as cursor coordinates. A gcur or imcur parameter will always read from the hardware
graphics or image display cursor if it is in query mode.

If the type is preceded by a star, *, the parameter is list-structured. When the parameter
is referenced, the value will come from a file, the name of which is the fourth field of the
parameter declaration. All of the basic types may be list-structured.

3.2.3. mode
This field indicates what actions are performed when the parameter is referenced or

assigned. The topic of modes is important to the CL and is covered more thoroughly elsewhere
(§4) Briefly, query mode generally causes the user to be queried each time the parameter is
referenced. Learn means that all changes to the parameter will be permanent. Auto mode
means that the effective mode of the parameter should be whatever the mode is of the task that
is using the parameter; auto mode defers mode selection to the task, or CL level. Hidden means
that the existence of the parameter will not be evident to the user unless its value is not accept-
able.

The mode field may be any reasonable combination of query, learn, auto and hidden.
These may be spelled out and separated with plus signs, +, or abbreviated to one character and
run together. For example,

...,auto+learn,...
and

...,al,...

and equivalent.

- 5 -

3.2.4. value
This field is optional. The value field is the initial or default value of the parameter. It has

various characteristics depending on the type of the parameter. If it is absent, the parameter will
be marked as undefined and will cause an error if used in an expression. A special entry, indef,
is allowed that marks the parameter value as being indefinite, but not undefined. It may be used
with all types. Acceptable constants in the value field are like those allowed by the CL in
expressions (see §5.1).

For boolean parameters, it should be either the three characters yes or the two characters
no.

Integer and real parameters are as one would expect. Real constants need not include a
decimal point, ., if not required.

For string and file name parameters, the field extends from the comma following the mode
field to the next comma, or the end of the line if none. It may be surrounded by single or double
quotes, ’ or ", but these are not necessary unless the string is to include a comma. The length of
the storage allocated for the string will be the minimum of 30 characters and the length of the
initial value, up to a maximum of 132. Later changes to the value of the string will be silently
truncated to the amount thus established.

Structs and the cursor types use the value field to indicate the number of characters of
storage to allocate to hold the value of the parameter. The value is a string consisting of the
entire next line of the parameter file. If no number is given in the value field, then just enough
storage to hold the next line will be allocated. If the number is larger, this allows the value to
grow longer than the length of the next line. Since dynamic string storage is not used in the CL,
the length of all strings is fixed and using the value field in this way permits a short initial value
but allows for later growth. The length of string storage is limited to 132 characters. It is an
error to explicitly specify a storage length shorter than the initial value.

The value field for list-structured parameters is the name of the file containing values for
the parameter. This name is subject to the same restrictions as a parameter of type fr and
environmental references are allowed.

Thus, the value field entry for a parameter in a parameter file has several different uses,
depending on the type of the parameter. The term value refers to that which is used when the
parameter is used in an expression and value field refers specifically to the fourth field of the
parameter specification. Because of this multiple usage, the CL recognizes this field with
several names, as described under parameter references (§5.2).

3.2.5. minimum and maximum
These two fields work together to specify a validity range for the value of the parameter.

They are ignored for all types except integer, real, and file name parameters and follow the same
rules as the value field for these type parameters. Their application to filenames is to test for a
simple lexical ordering. If they are both set when the parameter is referenced, then a query will
be generated if the value of the parameter is not within range. No range checking is done if
either the minimum or maximum are undefined or if min > max. If the parameter is list-
structured, then the range checking is applied to the entry read from the file.

3.2.6. prompt
This field behaves like a string and extends from just after the sixth comma in the parame-

ter spec to the end of the line. It may be quoted. As explained more thoroughly under query
mode, its purpose is to provide a meaningful prompt for the parameter during a query. If no
prompt string is given, then the query will just use the name of the parameter. As with strings,
the length of the prompt implies the amount of static storage to allocate; later changes to the the
prompt will be silently limited to this length.

- 6 -

4. Modes
The CL supports three modes of operation, query, learn and auto.

Query mode is the most interactive and is the standard mode when the CL is being used
interactively. It causes each parameter referenced by a task, or script, to produce a query on the
terminal consisting of the prompt string for that parameter, its current value and minimum and
maximum values, if set. If there is no prompt string, then the name of the parameter is used.
When the user sees this query, he may type a simple return to accept the current value or type a
new value. New values that are entered in this way are checked for validity immediately with
regard to type and range, and the query repeats until a reasonable value is entered.

A query will be generated regardless of the effective mode of the parameter if it does not
meet its range requirements. On the other hand, a query will be prevented if the parameter was
set on the command line, again assuming it is not out of range. Thus, the CL relieves the appli-
cation program from some of the burden of verifying its parameters.

Learn mode retains the values of parameters across task runs and even across CL ses-
sions. The default values of parameters come from their entries in the task’s parameter file. If
learn mode is not in effect, changes to parameter values by way of command line arguments to
the task or queries do not cause the parameter file to be updated and so the values revert back to
their defaults as soon as the task ends. Learn mode makes these changes permanent by updating
the parameter file for the task.

Hidden mode applies only to parameters. It prevents queries from being generated even if
the effective mode for the parameter is query, unless its value is out of range. Hidden mode also
prevents the default value from ever being "learned". The only way to change the default value
of a hidden parameter is by an assignment statement. Hidden mode is useful for parameters that
are rarely if ever changed to hide their existence from all but experienced users.

4.1. Determining Modes
The modes exist independently in a three level hierarchy: the parameter, the current task,

and the CL itself. Whenever a parameter is referenced, its effective mode is calculated. To
determine the effective mode, the mode settings of the three levels are used starting with the
parameter level. If the mode of the parameter is query or learn, that is the effective mode. If the
parameter’s mode is auto, then the effective mode is that of the current task unless it too is in
auto mode in which case the effective mode is that of the CL. If all levels are auto, the effective
mode is auto and neither query nor learn effects will occur.

Thus, each layer of the hierarchy, starting at the parameter level, defers to a higher level
until it finds either query or learn (or both). Note that the presence of hidden mode at the
parameter does not alter this process but rather serves to override query mode, should it be
found at any given level. As a practical example, all the auto-mode parameters in a task can
effectively be put into query mode at once by setting the mode once at the task level to query.

4.2. Setting and Changing Modes
The modes themselves are set in different ways at the parameter and task level. The mode

for a particular parameter is accessed as a field of that parameter called p mode. It may be
abbreviated. The mode of a task is in a parameter mode, of type string, that contains any rea-
sonable combination of the letters q, l, a and h. This parameter may be declared and initialized
as desired in the parameter file for the task just like any other parameter. If it does not appear in
the parameter file for a task when it runs, it will be manufactured and supplied with a default
setting of ’ql’. This is the only case of a parameter added by the CL to a parameter list for a
task. One of the parameters to the CL itself is also mode, and this serves as the mode of the
CL, the highest level in the mode hierarchy.

- 7 -

As a convenience for naming modes, four CL string parameters query, learn, auto and
hidden are defined to be the single-character strings ’q’, ’l’, ’a’ and ’h’. Examples of setting
modes at the CL, task, and parameter levels:

mode = ’ql’ # set CL mode to query, learn
package.task.mode = ’a’ # set given task mode to auto
package.task.param.p mode = ’ql’ # set given parameter’s mode
mode = query + learn # use pre-defined string params
mode += query # add query

The mode of a parameter may also be changed during a query for that parameter. If the
response to the query begins with a percent, %, then the mode for the parameter may be set
using the same format as that used in the parameter file mode field (see § 3.2). This is useful
during program development for making a parameter hidden once its default value has been
determined.

4.3. Recommended Mode Settings
The recommended default modes are auto and learn for the CL itself, query for each task

and auto or hidden for the parameters. Auto mode for all non-hidden parameters in a task allows
them all to be changed at once by changing the mode of the task. The user will rarely do more
than change a task’s mode to auto, hide a parameter (by use of the %h response to a query,
§4.2), or reset all parameters of a task to their original default by deleting its parameter file from
the uparm directory (see §3.1).

5. Expressions
The CL allows expressions wherever a simple variable might appear. This applies only to

the language, however, not, for example, in the parameter files. Expressions are the usual kinds
of combinations of constants, variables, intrinsic functions, operators, parentheses and expres-
sions (recursively).

5.1. Constants
Boolean constants are entered as the three characters "yes" or the two characters "no".

There are no true and false constants.

Integers are an uninterrupted sequence of digits; a trailing ‘b’ denotes an octal constant.

Floating point constants are as in most languages but a decimal point is not necessary if
not needed. 5, 5., 5e0, .5e1 and 5.e0 are all equivalent. Sexagesimal notation may also be used
to create a floating point value. A negative value is indicated by a leading minus sign, -, lead-
ing zeros are not necessary and the seconds field is optional. 1:23:4.56, -12:3:4.5, 1:2:3 and
-12:34 are all acceptable.

Strings are zero or more characters surrounded by single or double quotes, ’ or ". The
quotes are not needed in two cases. One is in response to a query. In that case, everything up to
the end of the typed line is taken to be the string. If the quotes are used, however, they will be
discarded. The other case is when specifying the value of a parameter on the command line
when running a task. If the corresponding parameter is of type string, filename or is list-
structured and the string need not be used in an expression, then the quotes are optional.

An additional constant, indef, is known to the CL. This is a special setting that means
indefinite, as opposed to being truly undefined. The latter causes an abortive error if encounted
during the evaluation of an expression. A parameter that is merely indefinite does not result in
an error or a query and is useful for indicating the value should be ignored, but propagated
through an expression.

- 8 -

See the discussion of the intrinsic scan function (§ 5.3) for two additional constants, EOF
and stdin.

5.2. Parameter References
The "variables" in CL expressions are task parameters. To reference a parameter, the most

general form is package.task.param.field. This form may be used anywhere a parameter is
legal. Only the parameter name portion is required. If the package and task are not specified,
the parameters for the current task, then the current package and finally those of the CL itself
are searched. The parameter is not found if it does not exist in one of these three places.

If the field is not specified, then the meaningful value of the parameter is used, as
explained under the discussion for the value field of a parameter (see §3.2). The possible fields
are p name, p type, p mode, p value, p minimum, p maximum and p prompt. In addition,
the value field may also be given as p length, p default or p filename. These are intended for
use with parameters of type struct or cursor, integer or real, or filename (or list-structured).
These aliases are not strictly enforced but are provided to improve readability and reliability in
CL commands, particularly within script tasks. Each portion of the parameter reference may be
abbreviated separately (see §7).

The result of using a logical operator is either the boolean true or false. These values are
represented internally as 1 and 0, respectively. Although it is bad programming practice to make
use of that fact in further arithmetic operations, it is not prohibited.

5.3. Intrinsic Functions
The CL provides a set of standard intrinsic functions that may be used in expressions.

They are much like those found in most math libraries and are listed here only for reference. As
with commands, they may be abbreviated but unlike commands their arguments must be
enclosed in parentheses. Calling them with illegal arguments or producing underflow or
overflow generates an error. Their argument(s) may be integer or real and they will try to return
the same type as their argument if no loss of precision would result.

Number ofUsage Arguments Description

abs(x) 1 absolute value
atan2(y,x) 2 arc tangent, with proper quadrant
cos(x) 1 cosine
exp(x) 1 natural exponentiation
frac(x) 1 fractional part
int(x) 1 integral part
log(x) 1 natural logarithm
log10(x) 1 common logarithm
max(x1,x2...) > 1 maximum
min(x1,x2...) > 1 minimum
mod(x,modulo) 2 first arg modulus the second
round(x) 1 nearest integer, rounded away from zero
scan(l,p...) > 1 free-format read; see below
sin(x) 1 sine
sqrt(x) 1 square root
tan(x) 1 tangent

The scan intrinsic function reads from its first argument as a string and assigns the pieces,
suitably type cast, into the remaining arguments. If the first argument is a list-structured param-
eter, the next line of the file is read and scanned, unless query mode is in effect in which case
the user is always prompted for the line. If the first argument is a string-type parameter,

- 9 -

including filename, struct, gcur or imcur, then the string is scanned. This serves as an in-core
read, much like a Fortran decode or a C sscanf function. Spaces, tabs and commas are recog-
nized delimiters. If the last target parameter is a string, it will receive the remainder of the string
being scanned.

Scan returns as its function value the number of successful conversions. Reading from a
list and encountering eof will cause scan to return a count of zero. There is a pre-defined con-
stant in the CL, EOF, which is simply zero; it may be used to make the test more explicit.
There is another CL constant, stdin, which may be used as the first argument to cause scan to
read from the standard input. Examples of scan are

Re a d g c u r a nd p r i n t r a d i i un t i l e nd o f l i s t .
wh i l e (s c a n (g c u r , x , y , r ema i nd e r) >= 2)

= s q r t (x∗∗2 + y∗∗2)

Re a d un t i l EOF i s d e t e c t e d .
wh i l e (s c a n (fi l e , l i n e) ! = EOF)

= l i n e

5.4. Operators
The following is a list of the arithmetic and logical operators available in the CL. They are

the same as in the SPP language.

Operator(s) Type of Result Function
+, −, ∗, / numeric the usual, but see below for + with strings
∗∗ numeric raise to power
% numeric first expression modulus the second; like mod()
<, > logical less than, greater than
<=, >= logical less than or equal, greater than or equal
==, != logical equal, not equal
&& logical logical ‘and’
|| logical logical ‘or’
! logical logical ‘not’

For those familiar with C, note the absence of =. It is not considered an operator that produces
an l-value but may only be used in an assignment statement.

The + operator can be used to concatenate strings. If only one of its operands are strings,
the other will be converted first. If one operand is a string, the other is an integer and the string
operand contains an integer on the same side as the integer operand, then an arithmetic addition
will be performed as well. For example,

’stringa’ + ’stringb’ → ’stringastringb’
’string1’ + ’string2’ → ’string1string2’
’string1’ + 2 → ’string3’
2 + ’string1’ → ’2string1’
2 + ’9string’ → ’11string’
’string’ + boolean param → ’stringyes’ (or ’stringno’)

Points, ., in strings with digits are not recognized as floatings so trying to add floatings to
strings, while not prohibited, probably doesn’t do anything useful.

- 10 -

6. Statements
Statements fall into the following categories: assignments, commands, immediate and flow

control. These will are discussed separately, below.

Statements may be delimited by newline or semicolon, ;, and may be grouped with brack-
ets, { and }. Nesting is supported. Comments begin with the sharp character, #, which indicates
that all characters from it to the end of the line are to be ignored. Statements that are too long
to fit on a line may be continued by ending the line with a backslash, \, or they are automati-
cally continued if the last character is a comma.

When used from a terminal, the CL issues a continuation prompt, >>>, when the outer-
most statement has not been completed. This indicates input is still being accepted and parsed.
No work will actually be done until the CL sees a complete input statement.

6.1. Assignment Statement
An assignment is a statement of the form parameter = expression. The parameter is

always permanently changed by an assignment statement, whether or not learn mode is in effect.

Two additional forms of assignments are provided that also perform arithmetic, param +=
exp and param −= exp. These are equivalent to param = param + exp and param = param −
exp. They are more efficient as well as more convenient. These forms also permanently change
the parameter.

All forms of the assignment statements will cause an error if the result of exp is undefined.
Thus, the CL will never allow a parameter to be set to an undefined state. The only way to get
an undefined parameter is by not setting it in a parameter file (see the value discussion in §3.2).
Assignment statements are the only way a hidden parameter may be permanently changed.

6.2. Commands
A command is the basic means of running logical tasks. It consists of the name of the

logical task, possibly with arguments, and pipes to more commands or io redirections. The argu-
ments to the command, if any, may optionally be surrounded by parentheses. These are recom-
mended in scripts. Command lines may be continued on the next line automatically if they end
with a comma or a backslash.

6.2.1. Command Arguments
The arguments to a command are given as a comma-separated list and come in two basic

forms, positional and absolute. The positional form is any general expression. The expressions
will be evaluated and assigned one-to-one to the corresponding parameters of the task, as
defined by their order in the task’s parameter file, not counting hidden parameters. Only the
value of the parameter may be set in this manner. A lone comma may be used as a placeholder
and skips a parameter without changing it. Parameters not reached in the matching are also not
changed.

The absolute form is an assignment, parameter = expression, where the parameter must
be a parameter of the task being run. This is useful when a parameter value is to be changed but
its position in the argument list is not known or it would be awkward to arrive at its position by
a large number of positional arguments. Since the parameter is explicitly named, fields other
than the default value may be changed with the absolute form.

Another form of absolute argument is the switch. It is a shorthand way of specifying the
truth value of a boolean parameter. A switch consists of the parameter followed by a plus, +, to
set it to yes, or a minus, −, to set it to no. Thus, these two forms are equivalent ways of turning
off the boolean parameter option:

- 11 -

task option=no
task option−

While they may be used together, all positional arguments must precede absolute argu-
ments. Here are examples of using the positional and absolute forms together: (note the parens
in the second example are optional)

task1 x, task2.param, op+
task3 (a, b, c, param2=x+y, op3−, param3=task4.x/zzz)
task4 x, y, z, op1+, op2=yes

Parameters changed on the command line will have their new values as long as the com-
mand is executing. If learn mode is not in effect for the parameters, they will revert back to their
original values when the task ends or if the task aborts for some reason.

6.2.2. Pipes and Redirections
A pipe connects the standard output of one task to the standard input of another task. A

pipe is indicated by separating the tasks with a vertical bar, |. As many pipes in a series may be
used as necessary. Redirections of the standard input and output of a task from or to files are
also supported.

The standard input may come from a file by indicating the filename after the less-than
symbol, <, and the standard output from the last task in a pipe sequence may be sent to a file by
giving its name after the greater-than symbol, >. Two greater-thans, >>, cause the output to be
concatenated to the end of the file. If the output redirection symbol is preceded by an amper-
sand, &, then the standard error will also be included, as in &|, &> and &>>. Output redirec-
tions, but not pipes, are considered absolute arguments to the task so they must follow any posi-
tional arguments and must be set off by commas. For example, task1 reading from file t1input
piped to task2 writing to file t2output is done as

task1 x,y,z, < t1input | task2 x2, y2=a+b, > t2output

6.3. Immediate Statement
This is the calculator mode of the CL. It consists of the basic assignment statement

without the left-hand side parameter, as in "= exp". Instead of computing the expression and
assigning it to a parameter, the result is simply sent to the standard output. This may in turn be
redirected if the calculation is being done from a script.

6.4. Flow Control
The CL provides if-then-else and while program flow control constructs. These look like

if (e xp r)
s t a t eme n t

else
s t a t eme n t

a nd
while (e xp r)

s t a t eme n t

This is quite general since the "statement" may be a group of statements in brackets. Also, since
if-then-else is itself a statement, they may be chained into if-then-else-if- and so on. The else
clause is optional.

- 12 -

6.5. Abbreviations
If the boolean CL parameter abbreviations is yes, then packages, commands, intrinsic

functions and parameters may be abbreviated. The scope of the abbreviation is limited by its
context. For example, if a parameter reference is task.param, the only candidates for the param
abbreviation are those parameters belonging to the given task; similarly for parameter names
given in the absolute form of a task’s argument list. Parameter fields, such as p name and so
on, are always considered within their own class so their briefest forms are always p n, p t,
p mo, p v, p l, p d, p f, p mi, p ma and p p (see §5.2). The intrinsic functions are also in
their own class.

Abbreviations are not allowed in scripts. They are intended only to streamline interactive
work with the CL.

7. Environment
The set CL directive, as explained elsewhere (§12), provides a simple string substitution

mechanism for filename translations. Most operating systems allow a logical assignment to a
physical device name for use in filenames. The CL trys to merge this with its own environment
table so that definitions in the host system are available within the CL in addition to new entries
added by the CL. Typical uses for the translations are portable names for system-dependent
directories and io devices, such as tape.

The CL keeps its environment table in a last-in first-out fashion. New entries hide but do
not overwrite old entries. Substitutions take place in strings being used as file names in com-
mands and in parameter files. This includes list-structured parameters and io redirection.
Environment references are indicated by following them with a dollar, $. For example, if the
following environment definition is made:

set mydir = ’/usr/myname/dir/’

then these uses

task x, y, z, > mydir$file1
task2 filename = mydir$file2

become

task x, y, z, > /usr/myname/dir/file1
task2 filename = /usr/myname/dir/file2

Note that the quotes around the value for mydir are necessary since the slashes are not legal in
identifiers.

The environment facility is strictly a string substitution mechanism. Directory names and
other uses must be complete enough so that a valid filename is the direct result of the substitu-
tion; the environment facility has no knowledge of file naming requirements on the host system
whatsoever.

8. Log File
If the boolean CL parameter keeplog is yes, then each command typed by an interactive

CL will be entered into a log. Commands that come to the CL from tasks or scripts are not kept.
The name of the file is in the filename CL parameter logfile. This parameter is only used when
logging is started. To change the name of the logging file after logging has already begun, set
keeplog to no, change the value of logfile, then restart logging by setting keeplog to yes. Each
time logging starts, the current time is entered in the log file as a CL comment.

- 13 -

9. Error Handling
From the start, the single most important requirement of the CL was that it properly han-

dle error conditions. As one veteran put it, "the error case is the normal case, and the case when
the program runs perfectly is the abnormal case".*

To most easily explain error recovery in the CL, the discussion diverges for a moment to
explain a bit of its internal structure. Each new logical task that is run pushes a data structure
onto a control stack. This structure indicates, among other things, where the standard input and
output for the task are connected and process control information. As each task dies, its control
structure gets popped off and the exposed task resumes as the active one.

When a task encounters an error, it issues a diagnostic to its standard error and informs the
CL. The CL then repeatedly pops tasks, killing them as necessary, until it uncovers one that had
its input and output connected to the terminal. Thus, an error condition forces a return to an
interactive task, most likely an instance of the cl directive.

As each task is popped, its name and the parameters that were set on the command line
when it was run are given as a kind of "stack trace" to aid diagnosis. Parameter files of tasks
that abort due to their own errors or because they got killed on the way to restoring an interac-
tive state are not updated. The environment, package and task definitions, and all other extensi-
ble data structures, are restored to their state at the time the resumed task was pushed.

The diagnostics from the CL all begin with "ERROR:". This always means that the full
abortive procedure outlined above has occurred. If an internal consistency check fails, this
becomes "INTERNAL ERROR:". A few diagnostics begin with "WARNING:". Warnings do
not invoke the abortive procedure but are merely informative messages generated during com-
mand processing.

Perhaps the least helpful error messages are "syntax error" and "parser gagged". These are
generated by the parser when it has no idea of what it is trying to crack or when it gets terribly
confused. The only advice, until the improved parser of CL2 is available, is to carefully inspect
the offending statement. If the error occurs during the interpretation of a script, an approximate
line number is also given.

10. CL Initialization
When the CL starts up, it tries to read two CL script files. The first is in an IRAF

system-wide directory and is called clpackage.cl. It defines the tasks in the root package
clpackage, makes useful environment entries and does other chores such as printing news. The
other is called login.cl and will be run if found in the current directory from which the CL is
started. This serves as a way to personalize the CL on a per-user basis. Typical uses are to set
modes, options and uparm, define personal tasks and packages and make environment entries
for frequently used directories. Note that login.cl is run as a genuine script and any changes it
makes to the dictionary after doing a "keep" will be lost.

11. CL Directives
The following commands are handled directly by the CL. They are always available in the

root package, clpackage. They behave as all other commands in that they may be abbreviated
and may have their input and output redirected as desired. Arguments in square brackets, [and
], are optional.

* Writing Interactive Compilers and Interpreters, P.J. Brown, page 55.

- 14 -

11.1. bye
Exit the current task and resume the previous one where it left off. If there is no previous

task, then the CL ends. Any task declarations, cached parameter files and environment
definitions not kept (see keep) will be discarded from core. The same effect may be achieved
by typing EOF (control-z on DEC systems). If used in a script task, it causes the script to
abruptly end as though the end of the script file had been encountered. Since most packages are
defined in scripts that do the cl directive, bye often has the effect of exiting from an entire pack-
age (see cl).

11.2. cache lt [, lt2, ...]

Read the parameter file for each given logical task(s) into the dictionary. They will
remain in core until the current task exits (see bye). This is useful before running a task repeti-
tively to reduce the file i/o required to bring in and possibly update the task’s parameter file
each time it runs.

11.3. cl
Run the cl itself as a task. This is generally useful in script tasks to stop the script

midstream and allow terminal interaction again. The script might start with a package declara-
tion, make some set and task declarations then do "cl()". This would cause the cl to run as a
subtask to the script task and allow user interaction, with the new package and tasks. When the
cl sees bye or EOF, the script task resumes, doing whatever cleanup it desires and exits, taking
the new package, tasks and other dictionary changes with it. Other uses of the cl directive are
to run script tasks. Since its input can be redirected, as with any other task, "cl < file" is a way
to run a script file. Note: just where the cl gets its input when run without arguments is still
being discussed but the above description, as far as it goes, should not change.

11.4. keep
Cause all currently defined tasks and packages and any cached parameter files to remain in

core when the current task ends. Normally, all dictionary space used by a task is discarded when
the task ends. If any further dictionary changes are made, they will be discarded as keep only
retains what was defined at the instant it is used. Keep only effects the current task. When the
task from which the current task was called ends, the kept dictionary space will be discarded
unless keep was called in the prior task as well.

11.5. lparam lt [, lt2, ...]

List all parameters for the given logical task(s), if any. The name, current value, and
prompt string is given for each, one per line. The parameters are given in the order in which
they should be used as positional arguments in commands. Hidden parameters are listed at the
end, surrounded by parentheses.

11.6. package packname

Create a new package with the given name. The parameter file associated with the current
task, if any, is associated with the package and becomes the package’s parameter file. All later
task declarations will go into this package. A package declaration normally occurs in a script
task, which creates the package and defines are tasks therein. If the package already exists, an
error is indicated.

As an aside, if the name of an existing package is itself given as a command, then it is
pushed and run as a kind of task; nothing is changed in the dictionary. Bye or EOF will pop this
pseudotask and return the current package setting to its previous state. This is useful for tem-
porarily changing the search path for commands when a few commands in a package are needed
without having to worry about tasks with the same name in other packages being found instead
(see §2.2).

- 15 -

11.7. redefine [lt1, lt2, ...] lt = pt

Exactly like the task directive except that redefinitions are allowed. A warning message is
still issued, however, if a redefinition does occur.

11.8. set [name = value]

Make a new, or redefines an existing, environment entry. If given without arguments, all
current entries are simply listed, one per line. Entries are made in the dictionary so are subject
to the same rules as other dictionary objects, that is, entries are discarded when the task that
does the set ends unless it uses keep. New entries are always made at the top of the list. Since
searching also starts at the top, a second entry with the same name as an existing one will make
the first entry inaccessible. An attempt is made to merge the environment facilities of the host
operating system with the entries managed by set. Examples are given in the environment dis-
cussion.

11.9. task [lt1, lt2, ...] lt = pt

Define the logical task(s) found in the given physical task. All entries are made in the
current package. Pt is the name of the physical task file. It may be in terms of environmental
directories or, if quoted, may be given in host-dependent form. If it ends in ".cl", the file is
assumed to be a script written in the CL language.

The logical tasks, lt1, lt2 and so on are the logical tasks that can be run from the physical
task. At least one must be given. If the logical task name is prepended with a dollar, $, then no
parameter file is to be associated with that task. If a newly declared logical task redefines an
existing one in the current package, an error message is issued and the entry will not be made.
Other logical tasks that do not conflict will still be entered, however. It is not an error to refer-
ence a physical task in more than one task command.

11.10. update lt [, lt2, ...]

Cause the in-core parameter file for the given task(s) to be written out. This is used in
conjunction with cache to force an update of a parameter file before the current task ends. It
may also be used to force an update of a parameter file that would not otherwise be updated,
that is, when learn mode is not effect.

11.11. version
Give the current version number of the CL. The current implementation gives the time at

which the program was built. The "version" of the CL for the near future is always considered
to be 1.2.

11.12. ? and ??
The "?" command gives the names of all the logical tasks defined in the current package.

The format is an indented, multicolumn block. Entries are read left-to-right top-to-bottom in the
order in which they are searched (opposite of the order they were declared). The "??" command
is similar but includes all packages. Packages and tasks that lie above the current package, and
are thus not immediately accessible, are given in parentheses.

12. CL Parameters
Some of the parameters belonging to the CL logical task itself have special significance.

Many of them have been mentioned elsewhere. These parameters behave according to all the
usual rules but they are used internally by the CL or by utility tasks to specify options. All the
CL parameters may be viewed with "lparam cl". CL parameters not included in the following
list are provided as handy scratch variables. Other parameters will be added as time goes on.

- 16 -

param type usage

abbreviations boolean enables abbreviations
keeplog boolean enables command logging
logfile filename name of logging file
menus boolean automatically do a "?" when changing packages
mode string sets mode of CL task

13. An Example
This is a complete example of a package, coord, written for the CL environment. The

package contains two logical tasks, airmass and precession. Airmass accepts elevation and
scale and computes airmass. The result is printed and saved in a parameter airmass. Preces-
sion computes the precession between any two years, year1 and year2. The ra and dec for year1
are read from the standard input and the precessed coordinates to year2 are written to the stan-
dard output. These two logical tasks are written in the SPP language and are defined in the sin-
gle physical task, coord.x.

The following are examples of actual running programs. The name of the files in each case
is given in boldface and is not part of the files. Numerous other examples can be found in the
source directories for the IRAF system.

The login.cl file (see §11) defines the logical task coord as the script task coord.cl in its
own directory.

file login.cl:

Wh e n t h e CL s t a r t s up , i t l ook s f o r a " l og i n . c l " fi l e i n t h e
c u r r e n t d i r e c t o r y . Th e l og i n fi l e s hou l d c on t a i n a ny c omma nd s
o r d e c l a r a t i on s wh i c h on e wa n t s e x e c u t e d upon s t a r t up . A KEEP
o r CL c omma nd mu s t b e e x e c u t e d a f t e r t h e d e c l a r a t i on s s e c t i on
o r t h e n ew d efin i t i on s wi l l go awa y .

Th e l og i c a l d i r e c t o r y up a rm, i f d efin e d , i s wh e r e t h e CL wi l l
s a v e upd a t e d p a r ame t e r fi l e s . Ot h e r IRAF s y s t em r ou t i n e s a l s o
u s e t h i s d i r e c t o r y t o s t o r e u s e r - s p e c i fic d a t a b a s e fi l e s .

s e t up a rm = " / u s r / j a c oby / i r a f / t a s k s / p a r am/ "
t a s k $ c oo r d = " / u s r / j a c oby / i r a f / t a s k s / c oo r d / c oo r d . c l "

k e e p # k e e p a dd i t i on s t o d i c t i on a r y wh e n l og i n . c l t e rmi n a t e s

file coord.cl:

- 17 -

CL s c r i p t t a s k t o d efin e a nd r un t h e " c oo r d " c oo r d i n a t e t oo l
p a c k a g e . Wh e n t h i s s c r i p t t a s k r un s , i t d efin e s t h e p a c k a g e
" c oo r d " , t h e p a c k a g e d i r e c t o r y " c od i r " , a nd t h e two l og i c a l
t a s k s c omp r i s i ng t h e p a c k a g e , AIRMASS a nd PRECESS . Th e t a s k
CL i s c a l l e d t o p r o c e s s c omma nd s f r om t h e u s e r . Wh e n CL
t e rmi n a t e s , COORD wi l l a l s o t e rmi n a t e (s i n c e t h e r e a r e no mo r e
c omma nd s i n t h e fi l e) , c a u s i ng t h e p a c k a g e a nd i t s c on t e n t s t o
b e c ome und efin e d .

p a c k a g e c oo r d

s e t c od i r = " / u s r / j a c oby / i r a f / t a s k s / c oo r d / "
t a s k a i rma s s , p r e c e s s = c od i r $ c oo r d

c l ()

file airmass.par:

Pa r ame t e r s f o r l og i c a l t a s k AIRMASS .

e l e v a t i on , r , a , 1 . 5708 , 0 . , 1 . 5708 , e l e v a t i on a ng l e i n r a d i a n s
s c a l e , r , h , 750 . , , , s c a l e h e i gh t
a i rma s s , r , h , 1 . , , , c ompu t e d a i rma s s

file precess.par:

Pa r ame t e r s f o r l og i c a l t a s k PRECESS .

y e a r 1 , r , h , 1950 , , , y e a r f r om wh i c h c oo r d i n a t e s a r e t o b e p r e c e s s e d
y e a r 2 , r , a , 1982 . 9 , , , y e a r t o wh i c h c oo r d i n a t e s a r e t o b e p r e c e s s e d

- 18 -

file coord.x:

Th i s fi l e i s wr i t t e n i n t h e SPP l a ngu a g e , wh i c h imp l eme n t s a
s ub s e t o f t h e p l a nn e d IRAF s c i e n t i fic p r og r ammi ng l a ngu a g e .

Defin e CL - c a l l a b l e t a s k s .
t a s k a i rma s s , p r e c e s s = p r e c e s s c oo r d s

AIRMASS - - Ai rma s s c a l c u l a t i on u t i l i t y . Ai rma s s f o rmu l a t i on
f r om Al l e n "As t r ophy s i c a l Qu a n t i t i e s " 1973 , p . 125 , 133 .
#
Th e l og i c a l t a s k a i rma s s h a s t h r e e p a r ame t e r s :
e l e v a t i on a ngu l a r h e i gh t a bov e ho r i z on
s c a l e s c a l e h e i gh t o f a tmo s ph e r e
a i rma s s c a l c u l a t e d a i r ma s s

p r o c e du r e a i rma s s ()

r e a l e l e v a t i on , s c a l e , a i rma s s , x # l o c a l v a r i a b l e s
r e a l c l g e t r () # f un c t i on s

b e g i n
Ge t t yp e - r e a l p a r ame t e r s " e l e v a t i on " a nd " s c a l e " f r om CL .
e l e v a t i on = c l g e t r (" e l e v a t i on ")
s c a l e = c l g e t r (" s c a l e ")

Compu t e t h e a i rma s s , g i v e n t h e e l e v a t i on a nd s c a l e .
x = s c a l e ∗ s i n (e l e v a t i on)
a i rma s s = s q r t (x∗∗2 + 2 ∗ s c a l e + 1) − x

P r i n t r e s u l t on t h e s t a nd a r d ou t pu t , a nd ou t pu t t h e
c ompu t e d a i r ma s s t o t h e CL p a r ame t e r " a i rma s s " .

c a l l p r i n t f (" a i rma s s : %10 . 3 f \ n ")
c a l l p a r g r (a i rma s s)

c a l l c l pu t r (" a i rma s s " , a i rma s s)
e nd

PRECESS_COORDS - - P r e c e s s c oo r d i n a t e s f r om y e a r 1 t o y e a r 2 .
Th i s t a s k i s a fi l t e r , wh i c h r e a d s c oo r d i n a t e p a i r s f r om t h e
s t a nd a r d i npu t , p e r f o rms t h e p r e c e s s i on , a nd ou t pu t s t h e
p r e c e s s e d c oo r d i n a t e s on t h e s t a nd a r d ou t pu t .

- 19 -

p r o c e du r e p r e c e s s c oo r d s ()

r e a l d e f a u l t y e a r 1 , y e a r 1 # y e a r t o p r e c e s s f r om
r e a l d e f a u l t y e a r 2 , y e a r 2 # y e a r t o p r e c e s s t o
doub l e r a 1 , d e c 1 # i npu t c oo r d i n a t e s
doub l e r a 2 , d e c 2 # p r e c e s s e d c oo r d i n a t e s
i n t f s c a n () , n s c a n () # f o rma t t e d i npu t f un c t i on s
r e a l c l g e t r () # g e t r e a l p a r ame t e r f un c t i on

b e g i n
Ge t t h e d e f a u l t " y e a r " p a r ame t e r s f r om t h e CL .
d e f a u l t y e a r 1 = c l g e t r (" y e a r 1 ")
d e f a u l t y e a r 2 = c l g e t r (" y e a r 2 ")

Re a d a nd p r e c e s s c oo r d i n a t e p a i r s f r om t h e s t a nd a r d i npu t
un t i l EOF i s d e t e c t e d . Fo rma t " r a d e c [y e a r 1 [y e a r 2]] " .

wh i l e (f s c a n (STDIN) ! = EOF) {
c a l l g a r gd (r a 1)
c a l l g a r gd (d e c 1)
c a l l g a r g r (y e a r 1)
c a l l g a r g r (y e a r 2)

i f (n s c a n () == 3) # no y e a r 2 g i v e n
y e a r 2 = d e f a u l t y e a r 2

e l s e i f (n s c a n () == 2) # no y e a r 1 g i v e n
y e a r 1 = d e f a u l t y e a r 1

e l s e i f (n s c a n () < 2) {
c a l l f p r i n t f (STDERR , " i nv a l i d c oo r d i n a t e s \ n ")
n e x t # do n e x t i t e r a t i on

}

Ca l l p r e c e s s i on s ubp r og r am t o p r e c e s s t h e c oo r d i n a t e s ,
p r i n t r e s u l t on s t a nd a r d ou t pu t (hms hms yyyy . y) .

c a l l p r e c e s s (r a 1 , d e c 1 , r a 2 , d e c 2 , y e a r 1 , y e a r 2)
c a l l p r i n t f (" r a : %12 . 1h d e c : %12 . 1h %7 . 1 f \ n ")

c a l l p a r gd (r a 2)
c a l l p a r gd (d e c 2)
c a l l p a r g r (y e a r 2)

}
e nd

