

FACULTEIT WETENSCHAPPEN

The missing ISM mass problem in NGC 205

Ilse De Looze¹, Maarten Baes¹, Jacopo Fritz¹, Tara J. Parkin², Christine D. Wilson² and VNGS/HELGA consortia

Abstract: NGC 205 is a low-metallicity ($Z \approx 0.3Z_{\odot}$), early-type dwarf satellite of M31. In the past, NGC 205 had a tidal encounter with M31 and a recent episode of star formation (500 Myr ago). Observations of these young stars predict a more massive ISM in NGC 205 than currently observed through HI, CO(1-0) and dust (< 160 μm) observations. Here, we revise the missing ISM mass problem based on JCMT CO(3-2) and Herschel dust continuum, [CII] and [OI] spectroscopic observations.

Fig 1: NGC 205, dwarf satellite of Andromeda.

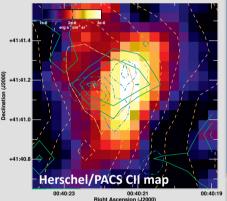
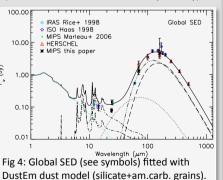



Fig 3: Map of central [CII] detection overlaid with HI, CO(3-2), MIPS 24μm emission contours (dashed, solid, dashed-dotted, respectively).

Theoretical gas predictions

Total Burst mass = mass of young stars $1.4 \times 10^6 \,\mathrm{M}_{\odot} \le \mathrm{M}_{\star} \le 5.3 \times 10^7 \,\mathrm{M}_{\odot}$

> assume star formation efficiency (SFE) ≈ 10 %

= M_{p} (left-over) + M_{p} (mass loss by p.n.) = M_g (current) $\geq 1.3 \times 10^7 M_{\odot}$

Previous observations

Gas: HI + CO(1-0) Dust (Spitzer obs.): $M_g \approx 1.5 \times 10^6 M_{\odot}$ $M_g \approx 3-6 \times 10^6 M_{\odot}$

inconsistent with predicted M_a

= MISSING ISM MASS PROBLEM

BUT : - Low Z \rightarrow [CII] better tracer of H₂? - CO observations only cover northern part Cold dust at λ ≥ 160 μm?

New observations

Gas: JCMT CO(3-2) + Herschel [CII]+[OI] **Dust**: Herschel → combining data from

Very Nearby Galaxy Survey (PI: C. Wilson)

- Herschel Exploitation of Local Galaxy

Andromeda (HELGA, PI: J. Fritz)

Gas: M_g (CO(3-2)) << M_g (CO(1-0))

[CII] weak detection: $M_{\sigma} \approx 1.5 \times 10^4 M_{\odot}$

[OI]: no detection

Dust: $M_d \approx 1-2x \ 10^4 M_{\odot} \ @ T_d \approx 18-21 \ K$

 \rightarrow M_g \approx 4-7x 10⁶M_{\odot} (GDR \approx 400)

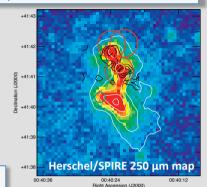
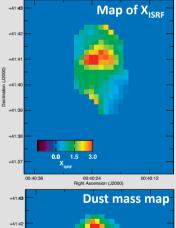



Fig 2: SPIRE 250 µm image with HI (white), CO(3-2)(black) contours and CO(1-0) pointings (red+green).

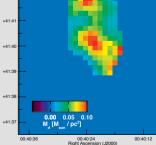


Fig 5: Pixel-by-pixel X_{ISRF} and M_d maps.

RESULTS

- From Herschel/JCMT observations, we reject the presence of a massive (cold) ISM in NGC 205.
- \rightarrow this confirms the missing ISM mass problem: M_g (predictions) >> M_g (observed)
- Non-standard conditions (top-heavy IMF, increased SFE) incapable of solving discrepancy.
- Part of ISM reservoir seems expelled from the galaxy, either due to supernovae or tidal influence.

¹ Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, S9, B-9000 Gent, Belgium

² Dept. of Physics & Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1, Canada