
The SOAR Communications Library New (SCLN)

Introduction.

The SOAR Communications Library New (SCLN) provides a set of LabVIEW VIs for
implementing TCP/IP connections in a client-server applications environment. Multiple
client-server connections are accepted , each acting in parallel and in a non-blocking
mode.

Background.

Client-server describes an application architecture in which the “client” requests an
action or service from the provider of service, the “server”. Client programs request
service from a server by sending it a message (or command message). Server programs
process client requests by performing the tasks requested by clients, and informs the
client about the result of the action by sending a response message.

Command messages are the responsibility of the users to define. A command message
consist of one or more bytes of information. Null commands are not accepted. The SCLN
can transport any type of message, being it ASCII or binary information. Internally this is
done by preceding the message with a 4 bytes header that contains the length of message
information. For LabVIEW applications, this is transparent to the user, but for
applications written in other languages, a more detailed description is given in Appendix
1.

The SCLN establishes one to one client-server connections. A server handles only one
client, but every application can have several clients and/or servers, depending on their
needs. The present implementation of the SCLN imposes a limit of 7 servers and 10
clients per program.

At any given time, there is only one command pending for every client-server
connection. The SCLN will not accept another command for that connection until a
response to the previous one has been received. The SCLN implementation enforces the
discipline of the command-response loop within certain timing constraints: to every
command there must be a response within 1500 ms or a timeout condition will be
generated. Under this condition, the connection is closed and the client must reconnect to
the server again (see the examples below).

Configuration file.

Before using the software, a “configuration” file needs to be prepared with the IP
addresses and port numbers of the computers that will run the applications to be
connected (a “soar_comms.cfg” file is included in the config folder of the SCLN
package). The configuration file is similar to a Windows INI file, consisting of section
headers names, enclosed in square brackets ([]), and section entries with parameter
information.

SCLN_UserManual (Rev 1.2) 1

The section headers are the name of the “servers” to be utilized in the applications. The
entries consist of the server IP address, the client IP address and the port number. Note
that a server and a client IP must be given, since the SCLN performs authentication when
a client tries to establish a connection. If the IP numbers don’t match the ones in the
configuration file, the connection is rejected.

Example configuration file:

[CommLib]
Version=1.0

[SRV1]
IP_Server=139.229.3.21
IP_Client=139.229.3.20
IP_Port=30040

[SRV2]
IP_Server=139.229.3.21
IP_Client=139.229.3.20
IP_Port=30050

[TCS_OPR]
IP_Server=139.229.15.2
IP_Client=139.229.15.4
IP_Port=5684

[TCS_INS]
IP_Server=139.229.15.2
IP_Client=139.229.15.4
IP_Port=5687

[KERNEL_CMDS]
IP_Server=139.229.15.2
IP_Client=139.229.15.2
IP_Port=8008

[KERNEL_SVC]
IP_Server=139.229.15.2
IP_Client=139.229.15.2
IP_Port=8025

 [DOME]
IP_Server=139.229.15.7
IP_Client=139.229.15.2
IP_Port=5679

[ECS]
IP_Server=139.229.15.5
IP_Client=139.229.15.2
IP_Port=5681

Example Use: The Server.

SCLN_UserManual (Rev 1.2) 2

Figure 1 shows the diagram of a server application. Starting on the left, there is a
sequence with two frames. Frame 0 contains the SCLN_InitGlobals.vi that initializes the

Figure 1. Example Server Diagram

internal communications database. This must be the first VI to be executed in the
application.

Frame 1 contains the SCLN_InitServers.vi, that performs the initialization of the servers
in this program. It needs a wire connection to the number of servers (2 in this case), to an
array with the names of the servers and to the configuration file path. The names of the
servers must correspond to the names in the configuration file.

From the sequence you wire the error output to case structures to enable or prevent
execution of other parts of the diagram. The top middle case wraps SCLN_Servers.vi that
contains the logic to perform the communication with the clients.

SCLN_UserManual (Rev 1.2) 3

The error wire then enters SCLN_WaitInitReady.vi. This VI must be called before any
other user code is executed. Output of the VI is an error wire that contains the status of
the initialization process.

The top right loop is a typical front panel loop, servicing the stop button and informing
the status of the connections. When the stop button is pressed,
SCLN_SetShutdownFlag.vi is invoked. This action sets the shutdown flag in the
communications database allowing an orderly stop of the application. The status of the
connection is extracted with the SCLN_ServerConnected.vi. The name of the server is
wired as an input, and the response is a Boolean with true indicating connected. To the
right of the loop there is a sequence that is executed when the front panel loop exits. The
sequence contains the invocation to the SCLN_CloseServers.vi, that is needed to escape
the server loop and to finish the application.

The other two loops corresponds to the user code servicing the commands received from
a client. The first VI called is SCLN_GetMessageFromClient.vi where you wire the name
of the server you are implementing. The VI returns an index wire that you must connect
to SCLN_ResponseToClient.vi along with the actual response to send to the client. In
between there is a process message section with the code appropriate for each command.
In this example, the code consists of echoing the message concatenated with the name of
the server. Upon return from sending the response to the client, the control goes to
SCLN_CheckShutdown.vi, that examines the database for the presence of the shutdown
flag. If the flag is true, the loop is exited.

Example Use: The Client.

Figure 2 shows the diagram of an example client application. As with the server example,
the first vi invoked is SCLN_InitGlobals.vi, that is shown inside the top left sequence
frame. From that frame a boolean is wired to the other loops in the application.

The top loop is a typical front panel loop, servicing the stop button and informing the
status of the connections. When the stop button is pressed, SCLN_SetShutdownFlag.vi is
invoked. This action sets the shutdown flag in the communications database allowing an
orderly stop of the application. The status of the connection is extracted with the
SCLN_ClientConnected.vi. The name of the server is wired as an input, and the response
is a Boolean with true indicating connected.

The other two loops corresponds to the client application logic. The outer loop starts with
the client initialization VI: SCLN_InitClient.vi. The server name is wired as an input and
the return is an error cluster showing the status of the initialization and connection
procedures. If there is no error, the second loop is entered where the exchange of
commands is performed. If there is an error in the connection, the client keeps attempting
to connect until the shutdown flag is set.

At the center of the internal loop in the example, are shown the two VIs used to exchange
messages with a server. To SCLN_MessageToServer.vi you wire the server name and the

SCLN_UserManual (Rev 1.2) 4

message to send. The output is an index value that you wire to
SCLN_GetResponseFromServer.vi, to receive the response message. After the response,

the shutdown flag is checked.

Figure 2. Example Client Diagram

he other sections of the loop deals with message generation and display activities. The

e
d

command.

T
message consists of the sequential loop index concatenated to whatever characters where
typed in a string control input. Before sending the message, the present tick count is
taken, and the same action is repeated after receiving the response. The tick counts ar
subtracted and the result displayed on a chart. Finally, a random number between 50 an
600 is generated, that serves as the wait time in milliseconds before sending the next

SCLN_UserManual (Rev 1.2) 5

Appendix 1: Connecting from non LabVIEW Applications.

The SCLN transport messages between clients and servers, by preceding each message
with 4 bytes indicating the length of the message. For non LabVIEW applications it’s
necessary to extract those 4 bytes when receiving a message and to insert 4 bytes when
sending a message. Care must be taken though, because even though the 4 bytes represent
an integer number of characters corresponding to the message length, those bytes are
rotated due to the way LabVIEW “casts” integers to strings and vice versa. To help
illustrate the solution, a C code program (tsTCSconn.c) is included in the SCLN C folder
that can be utilized as a template for communicating non LabVIEW applications with the
ones using the SCLN.

SCLN_UserManual (Rev 1.2) 6

