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ABSTRACT 

 
Most large telescope projects are using UNIX, C or C++ and VME hardware for development of their TCS. The SOAR 
Telescope is using the LabVIEW graphical programming environment under Real-time Linux and WindowsNT, hosted on 
PCI-Intel based hardware to achieve a flexible, cost effective and reusable TCS architecture. 
 
A Rapid Prototype and full development plan of the SOAR TCS is reviewed to show advances in: (1) Prototyping speed, 
which makes implementation and test of features faster than specification under older methods. This allows the development 
environment and prototype modules to become partners with and part of the specification documents. (2) Real-Time 
performance and reliability through use of RT Linux. (3) Visually Rich GUI development that allows an emphasis on 
"seeing" versus "reading". (4) Long-Term DataLogging and Internet subscription service of all desired  variables with instant 
recall of historical trend data. (5) A "plug-in" software architecture which enables rapid reconfiguration and reuse of the 
system and/or plug-ins utilizing LabVIEW graphical modules, a scripting language engine(in LabVIEW) and encapsulation 
of interfaces in "instrument-driver" style "plug-in" modules. (6) A platform-independent development environment and 
distributed architecture allowing secure internet observation and control via every major OS and hardware platform. 
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1. INTRODUCTION 
 
The SOuthern Astrophysical Research (SOAR) telescope is a project to build a 4.2-meter telescope on Cerro Pachon in Chile. 
The project is a collaboration between UNC, Brazil, Michigan State University, and the National Optical Astronomy 
Observatories (NOAO), (with Chile as host nation) with the objective to design, construct, and commission a 4-meter 
optical/IR telescope that is optimized for quality. It will be the largest 4-meter class telescope in the world. 
 
The basic design is an F/16 Ritchey-Chretien with extremely challenging specifications. The telescope will feature an active 
optical system that includes a figure-controlled primary mirror (M1), an actively aligned secondary mirror (M2), fast tip/tilt 
image stabilization at the tertiary mirror (M3), an optimization wave-front sensor, and control electronics and software.” 1 

 
Instruments will be located on two Instrument Selector Boxes (ISB) at the Nasmyth points and at three bent-cassegrain 
points. The dome features a single shutter with associated windscreen, several fan vents and a chilled water HVAC system 
for environmental control. A weather tower will report environmental conditions outside the dome. Internal temperature, 
humidity and other variables will be monitored and controlled to optimize isothermal conditions.  
 
The hardware is partitioned into five main subsystems: the Mount Subsystem, the Adaptive Optics Subsystem, the Dome 
Subsystem, the Instrument Adapter Subsystem, the Environmental Subsystem. 
 
The software is partitioned into four main systems:  the Observatory Control System (OCS), the Telescope Control System (TCS), 
the DataLogger System and the Instrument Control System (ICS). This paper focuses on the TCS and DataLogger. 

The SOAR project office desired to take advantage of recent technical advances and cost reductions in commercial PC based 
hardware and software. An evaluation of several tools lead to choosing LabVIEW as the primary candidate. LabVIEW is a proven 
programming system and is being used in science, engineering and factory process control all over the world. The SOAR project 
team decided to implement a design study, with a prototype LabVIEW TCS as a deliverable, prior to committing to use LabVIEW in 
the full TCS development. A search for LabVIEW integrators lead to the selection of Imaginatics to implement the prototype. In 



addition, the ability to connect with slalib ‘C’ code, in a non-trivial form, (such as the Gemini kernel) was deemed critical to the 
approval of LabVIEW in the final TCS. 2 

The SOAR Instrumentation Control (IC) committee has also selected the LabVIEW as the standard environment for all SOAR 
instrument related components. Commonality of language and some of the underlying libraries will make long term maintenance 
easier and more cost effective for both TCS and Instrument Control System (ICS). 

This lead to a series of meetings and prototype revisions of increasing complexity and capability. Currently, two levels of prototype 
are implemented.  The third level is nearing completion, and will include most of the final graphical user interfaces (GUI). The first 
“demo” prototype was developed at a meeting of  SOAR, Imaginatics and Rutherford Appleton Labs (RAL) in September of 1998. 

 

 

 

 

 

Figure 1.0  First TCS demo architecture for Slalib test. The module layout of the first TCS demo implemented in LabVIEW and “C” for the 
SLALIB function calls. 

The purpose of the demo was to introduce RAL personnel to LabVIEW, to show LabVIEW’s Rapid Application Development 
(RAD) capabilities, to demonstrate the capability to interface to pre-written C libraries, (specifically SLALIB) and to enable a 
discussion on what features were required to be demonstrated in the SOAR TCS Prototype I (STP-1) version. The demo included 
modules for OCS entry of target RA/DEC, TCS calculation of associated Alt/Az position demands with timestamps using calls to 
SLALIB routines, Mount reception of demanded position with graphing of time between updates. Initial communications were 
handled using global variables because the demo was hosted on a single CPU running Windows98. 

     

Figure 2.0  First demo GUIs. The module layout of the first TCS demo implemented in LabVIEW and “C” for the SLALIB function calls. 

The demo showed the required capabilities with the exception of stability of timing in the 20 Hz update rate. This can be 
observed in the center and right side graphs in figure 2. The irregularity of timing on the Windows platform was a concern to 
all. Implementation of several new capabilities in the STP-1 version of the TCS were requested to fully demonstrate 
LabVIEW’s capability to handle the robustness, timing and flexibility requirements of SOAR: (1) Distributed subsystems. (2) 
Show slow, medium and fast kernel loops. (3) Incorporate a modified Gemini kernel. (4) Show subsystem status, health and 
if in position. (5) Show quick initialization and rebooting. (6) Incorporate logging of subsystem data. (7) Simulate Mount 
servo action/response. (8) Develop an OCS GUI interface. (9) Incorporate configuration files for initialization. (10) 
Interpolation of the 20 Hz commands. (11) Improve smoothness and regularity of 20 Hz position demands. (12) Implement 
the Kernel/TCS on a Linux platform. (13) SkyMap Interface to OCS to demonstrate utilization of commercial software that 
accesses the professional star catalogs. 
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Imaginatics was tasked to develop the non-kernel portion of the STP-1. RAL was tasked to develop a modified Gemini kernel in "C“ 
code, along with instructions in its operation. This kernel was to demonstrate LabVIEW and PC capability to handle the number 
crunching load of a real kernel.  

The STP-1 subsystems included: Mount, Dome, Adaptive Optics, Instrument Adapter and Environmental simulations, all on 
PCs/notebooks connected by TCP/IP and 10BaseT Ethernet. The simulations had GUIs that represented the subsystems in a 
pictorial “mimic bus” manner, demonstrating LabVIEW’s capabilities in user interface development. 
 
The TCS Prototype I (STP-1) implementation: The software developed during this phase of the project was divided into 
seven main modules, per the layout in Figure 3. It performed all of the required functionality including the star catalog 
interface (using SkyMap). The modules are: 
OCS GUI & SkyMap Interface: Astrometric target data entry and routing to the TCS module. 
TCS GUI & DataLogger GUI: Astrometric data (from OCS or front panel). Calling of the Gemini kernel at regular 
intervals. Supplying Alt-Az commands to the Mount and Dome from the Kernel. Commands to other subsystems and logging 
of return data. 
Adaptive Optics Subsystem Simulator GUI: Display of M1 figure positioners and M2 position with 5 degrees of 
freedom. 
Mount Subsystem Simulator GUI: Acceptance of Alt-Az commands and simulation of motor slewing and tracking. 
Rotator position. 
Environmental Subsystem Simulator GUI: Display and simulated control of two chillers with associated pumps and 
three fans each. Also includes weather station information and an expandable table of temperature and other industrial 
signals, such as valve position, pressure, strain, etc. 
Dome Subsystem Simulator GUI: Simulation of Dome azimuth, two shutter doors, two vents, and a windscreen. 
Instrument Adapter Subsystem Simulator GUI: Selection of Instrument Selector Box position and instrument type. 
 
The module layout for STP-1 was implemented as follows: 
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Figure 3.0   TCS Prototype I software module layout. This implementation is using 10baseT Ethernet and LabVIEW’s built in TCP/IP for all 
communications. This interconnectivity will be replicated in later prototypes and the final TCS implementation, although the physical layer shall be 
100baseT or faster. 

The subsystem simulators all included controls for setting local control or remote control modes. Each had a “Health” 
indicator, which was manually set from the front panel and was then transmitted to the TCS for display and logging. The 
Mount and Environmental simulators were developed first, as they were the most complex. These were then used as 
templates to make the other subsystem simulators. Each simulator acted as a TCP/IP server to the TCS module, which acted 
as the client. 



Software reuse: 
Rapid development of the different simulators gave a good demonstration of the efficiency of LabVIEW development. As 
soon as the code was finished for the first modules it was copied under a different name for reuse on this project 
 

     
 
Figure 4.0   OCS, SkyMap and TCS GUIs for STP-1. Many of the custom controls developed in the TCS GUI were reused in the OCS and other 
GUIs/modules. The SkyMap interface was implemented using the windows clipboard and clipboard manipulation VIs in LabVIEW. 

 

 
 

Figure 5.0 The TCS Module source code diagram: This shows four different parallel loops, all running concurrently. 



  
 
Figure 6.0 Mount Subsystem Simulator & Dome Subsystem Simulator GUIs. The positions of the Mount Altitude, Azimuth and Rotator 
are shown using a combination of customized LabVIEW controls, graphics from the SOAR project office and trend charts to show the 
motion history. GUI. The dome GUI at right is based on the previously developed Mount GUI. It uses many of the same controls and 
indicators. The diagram also reused much of the code from the Mount Simulator. This copying of previously developed code maintained 
connections from the diagram to the front panel controls.   
 

2. REAL TIME LINUX 
 
The SOAR TCS is partitioned into several subsystems, organized in terms of well defined functions. The subsystems are 
coordinated by what is called the TCS Application, which has the responsibility of making information readily available on 
time, for the system to work in a fluid manner. In this section we present the tests performed to ensure the correct execution 
of the processes. 
 
The only time critical section of the TCS Application is the computation of the demanded mount position, and the 
transmission of the demand to the mount itself. This process is done every 50 msec, and even though it seems like a long time 
in terms of what one considers “real time”, it needs to be done on time, every time. 
 
The TCS prototype under Windows, was showing signs of not fulfilling the demand, and the activity display was telling us 
that clock ticks were missing every so often. Instead of abandoning our LabVIEW environment, we looked for alternative 
platforms that can support “real time” tasks. Our search for alternatives leaded us to a variant of Linux known as RTLinux. 
 
RTLinux (www.rtlinux.org) is a hard real-time variant of Linux, that provides the capabilities of running special real-time 
tasks and interrupt handlers on the same machine as standard Linux. These tasks and handlers execute when they need to 
execute no matter what Linux is doing. Typical response times are under 15 microseconds on RTLinux running on a generic 
x86. 
 
RTLinux used in this prototype was version one. It provides very simple services to define real-time tasks. Simple FIFOs are 
implemented for transferring data between real-time processes and Linux processes. A simple fixed-priority scheduler is 
available. All in all, with very few money you can setup a very reliable real-time system for a variety of applications in the 
control area. As of today, version two is available with a POSIX compliant API, as well as several other independent 
distributions. 
 
A test was designed to check whether this platform could be utilized with LabVIEW. LabVIEW is a multithreaded package, 
so in principle it should be possible to trigger the execution of a thread from the real-time kernel, and then play with priorities 
at the main Linux level to get the desired execution sequence. 
 
The test is shown in fig. 7. The Linux processes consists of the three demand computation loops, fast, medium, slow, a 
dispatch process implemented using the select function pending on messages sent using the RTLinux FIFO mechanism, and 

http://www.rtlinux.org/


the LabVIEW processes. The dispatch program and the computation loops are compiled and make into a shared library. 
LabVIEW connects to Linux shared libraries by means of the Call Library Function. 
 
The RTLinux side consists of an activation task and a flags control task. The activation task is awakened with a 
preprogrammed clock. The clock is running at 20hz for the fast loop, at 1 Hz for the medium loop and at 0.1 Hz for the slow 
loop. The flags are control structures that give an indication of the completion of the previous activation. If a loop hasn’t 
finished when it’s time to activate it again, an error condition is raised, so it’s possible to check  for any missing activation 
failure. 
 

Figure 7.0  RT Linux  - Linux – LabVIEW Functional Interfaces. 

The sequence of events is as follows. LabVIEW calls the dispatch process and waits on the select function. The activation 
task is awakened by the clock, and the first thing it does is to check if the flag for the loop is set.  If it’s true then it resets the 
flag and send a message through a FIFO to the dispatch process. This process now triggers the selected loop which upon its 
completion, sends a set flag message through another FIFO to the flags control task. Then the dispatch process returns to 
LabVIEW with the updated information, and the entire sequence repeats again. 
 
The test was run for many days and no missing activation was detected, giving a good indication of the robustness of the 
system. The next step was to modify the Windows version of the TCS application, to link with the new shared library in the 
Linux platform. This was a straightforward process as you can easily port VIs between  different LabVIEW releases. The 
porting process was successful and it was decided to utilize RTLinux for the implementation of the TCS Application, as well 
as the Instruments control programs. WindowsNT will be utilized for the TCS GUIs, and the DataLogger in order to take 
advantage of the ActiveX capabilities of LabVIEW under that platform for display widgets and reporting using MS Office. 
 

3. LABVIEW TUTORIAL 
 
The software was developed in LabVIEW version 5.0.1f1 on Windows98/NT 4.0 machines. SkyMap Pro 5 was used as the 
star catalog. Graphics images were edited with PaintShopPro 5.0 and Visio Technical 5.0a.  SLALIB and the Gemini 
Pointing Kernel were compiled with Visual C 5.0 under Windows and GNU C under Linux. 
 
Since LabVIEW is a relatively new language to the astronomy community, a brief summary of its development environment, 
coding paradigm and built-in libraries is in order. LabVIEW is a compiled, general-purpose language with all the normal 
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control constructs and data types. LabVIEW differs from textual languages in several key ways: (1) The source code is 
entirely graphical, resembling a circuit schematic. (2) It has inherent parallelism of loops and control flow. (3) Execution 
order is data driven, i.e.; a node begins execution when data is available at all of its input controls, i.e., “dataflow”. (4) The 
graphical user interface is built in to the routine and also implements part of the calling mechanism. (5) Although strongly 
typed, LabVIEW’s built in functions are largely polymorphic. They auto-adapt to the wired data type. (6) Syntax errors are 
inherently minimized in LabVIEW. 
 
A LabVIEW software routine is called a “Virtual Instrument” or “VI”. Tool selection is via a “Tool Palette”. 
 

                   
 

Figure 8  LabVIEW front panel and processing code diagrams The LabVIEW environment has menus of controls and functions that are 
available in palettes of icons. Drag and Drop is used to transfer items to the front panel and diagram. 

Each VI is composed of three parts: the front panel (GUI), the code diagram, and the subVI connector. The VI shown above 
in Fig 5 uses the front panel (GUI) on the left to get X and Y from the operator and computes Z = X*Y in a loop in the 
diagram on the right until the STOP button is pressed, which exits the while loop. A VI may call any other VI as a “subVI”. 
Collections of VIs may be stored in libraries. (*.llb files). 
 
Main LabVIEW libraries for STP-1.  In developing the STP-1 software heavy use was made of two built in libraries: 
TCP/IP Communications (subpalette to Communications) allows creating, closing connections, listeners, reads, writes and 
IP-string conversions. Synchronization VIs (subpalette to Advanced) has several submenus for creating notifiers, queues, 
semaphores, rendezvous and occurrences. These allow synchronization of VIs without polling loops. Essentially software 
interrupts with data passage attached to the interrupt. These libraries are available as submenus to the main palette. They are 
shown here along with the Control Structures menu. 
 
LabVIEW Function Palette  Includes 21 subpalettes of built-in nodes and VIs to perform various tasks. The last button on 
the bottom allows entering any subVI via a file dialog. The available palettes are: Control, Numeric, Boolean, Strings, 
Arrays, Clusters, Comparison, Time&Dialog, File, Instrument I/O, Drivers, DAQ, DSP, Math, Graphics&Sound, 
Communications, Application Control, Advanced, Reports, Tutorial, and User Libraries. 

       
 
Figure 9 VI Menus, Submenus and Hierarchy: These were used extensively in the STP-1 design. All external communications were 
handled by TCP/IP. The TCS internal data passage was mainly by notifiers (one broadcasting to many), and Queues, (many sending to 



one). Additionally, the “Call Library Function” in the Advanced palette was used to call the Gemini Kernel C code.  A typical VI hierarchy 
(of the STP-1 OCS module) is shown on the right. 
 

4. LABVIEW ADVANCED TOPICS 
 
Although LabVIEW is a dataflow language and normally uses “wires” to connect nodes and pass data, there exists another 
method for indirectly calling VIs and manipulating VIs and controls either locally or remotely on another machine connected 
over the network. This method is called VI Server. VI Server can be either ActiveX or TCP/IP based. SOAR will use the 
TCP/IP method exclusively.  The basic calling mechanism is illustrated below.3 
 
 
 
 
 
 
 
 
 
 
Figure 10 VI Server Mechanism: The VI Server allows control of a remote VI using a reference to that VI rather than the usual wires.  
All SOAR VI Server communications are handled by TCP/IP. 
 

     
 
Figure 11 TCP/IP Listen/Process Mechanism: The STP-1 communications and some of the final TCS communications utilize a “Listen” 
(on left) code technique and “Process Message Queue”  (on right) technique. These fragments were copied and reused throughout the STP-
1. They will be modified and encapsulated into subVIs for use in the final TCS. 
 
 
 

5. CURRENT TCS & DATALOGGER 
 
The previous portion of the paper focused on the TCS prototypes. This section focuses on the current architecture of the 
overall TCS, DataLogger and subsystem interfaces as they will be implemented in the final versions. Figure 12 below 
illustrates the software architecture and functions in the modules of the TCS, DataLogger and TCS Subsystems. The TCS 
Application will be hosted on a Linux machine with a very minimal GUI. Normal interaction with the TCS Application shall 
be through the TCS Operator GUI which shall be hosted on a different machine running WindowsNT. The Instrument 
Computer(s) shall be based on Linux, and possibly the Calibration Wave Front Sensor (CWFS) Acquisition computer may be 
Linux. The Dome and Environmental Subsystem computers are currently scheduled to be WindowsNT machines. The 
Instrument Utility machine may be Linux or NT based. Although the architecture assigns functions to specific machines, 
almost any machine could be used to perform some of the functions of another machine should a machine become disabled. 
The platform independence of LabVIEW shall allow for rapid reconfiguration of the overall system in the event of casualties 
to an individual component.  
 
This architecture shall minimize the effect of loss of a single machine, allowing the telescope to continue operations in a full-
up or degraded mode upon loss of resources. Subsystems shall automatically reconnect communications after a casualty 
recovery. Actual control transfer shall be by manual operator action after verifying that the recovering module/subsystem is 
again functioning properly. 
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Figure 12 TCS Architecture: The current architecture for the final TCS4. 
 
The final TCS operators panel combines data display and control. 75 % of the area is devoted to displays that the operator 
should always have visible. The lower right corner has a multi-tab control area where most operator actions occur. 

 
 
Figure 13 TCS Operators GUI: The current layout for the final TCS Operators GUI Uses a combination of custom and built-in LabVIEW 
controls. 



 
DataLogger Architecture: The DataLogger implements several functions: (1) Captures Status, Alarms, Diagnostics data. (2) 
Tool based on command exchanges. (3) Variable Names Database, (4) Updates from each subsystem’s database, (5)  
Selection of items to capture, (6) Query subsystems, (7) Information stored for DBMS access, (8) Status available system 
wide, (9) Subscription mechanism, (10) Data visualization. 
 

   
 
Figure 14 DataLogger Concept Diagram and DataLogger GUI: The data logging concept3 gathers all variables exported from the TCS 
Subsystems into a Names Database. From this an Items Selected List is queried by a LabVIEW process using TCP/IP and VIServer 
communications. The collected data is logged to a three-part database using the Citadel database, an SQL database and a LabVIEW 
DataLogger database. Internal and external subscribers make a request to be sent updates of selected data items using the LabVIEW 
DataSockets interface.  The GUI on the right displays an event log in the LL, a list of current data Subscriber information in the LR, 
controls and buttons to access setup dialogs in the UR, and an operator definable display area in the UL/middle. 
 

6. LABVIEW CONNECTIVITY 
 
LabVIEW is currently available in the following operating systems(OS): Windows 3.1/95/98/NT/2000, Linux/RTLinux 
(Redhat), Concurrent/Harris Nighthawk/PowerHawk, Mac, Sun Solaris, HPUX, LabVIEW/RT (Pharlap). Most of the 
functions are native LabVIEW “G” code and are portable from platform to platform. This has allowed the SOAR project to 
code various modules on the programmer’s personnel choice of machine and OS and the rest of the team has shared the code 
on their platform by simply opening the code and resaving which performs an automatic recompile. This platform 
independence has reduced project costs by allowing reuse of available computer resources, rather than purchase of new ones 
for the project. 
 
Graphical Object-Oriented Programming (GOOP): Careful encapsulation of key functions in “Virtual Instrument classes” is 
enabling reuse of communication libraries on all TCS and Subsystem platforms with the exception of the Mount subsystem 
which uses custom pre-written C code under the QNX operating system. 
 
SOAR makes heavy use of two connectivity functions in LabVIEW: DataSockets and VIServer. VIServer is used mainly for 
control functions, both locally and on remote modules. DataSockets is used mainly for status data transfer. Both functions are 
built on TCP/IP. 
 



DataSockets: Is a client-server data broadcast utility built into LabVIEW. It allows a server to be set up that broadcasts 
selected data to client subscribers. The SOAR DataLogger publishes data both internally and over the INTERNET using 
DataSockets. This allows remote subscribers to access live SOAR data using either a LabVIEW client, Visual C, Visual 
Basic or via a web page. Security: The DataSockets Configuration utility allows pre-defined data items or items can be 
created on-the-fly. The predefined items can be restricted as to which readers(clients) and writers(servers) have access to 
specific data items. SOAR uses this facility to insure that only the desired portions of the system have command broadcast 
capability. External clients access SOAR data through a firewall. DataSockets can work through a firewall using a free add-
on. DataSockets has two methods for securing data transfer, as follows:  (1) DataSocket Server Manager, which allows 
configuration which machines have permission to read, write, and create items on the DataSocket Server. (2) Running the 
DataSocket server on a machine outside the security firewall, while the data acquisition application  remains inside the 
firewall. Buffered handshaking between the TCS DataLogger server and the various internal and external clients insures that 
all clients receive every update of data. The TCS interlock mechanism can use DataSocket in the multiple-writer mode to 
allow several TCS subsystems to update interlock variables which are then broadcast to the other subsystems. DataSocket 
bandwidth is mainly limited by network bandwidth. Benchmarks for 10BaseT are up to 320Kbytes/sec. SOAR’s Fast 
Ethernet will achieve much higher data rates. 
 

          
 
Figure 15 DataSocket Concept Diagram (left) and DataSocket VI Palette (right): The DataSocket allows publishers of data to send the 
data to a DataSocket Server, which may be on another machine, which then publishes data to remote LabVIEW clients and web pages. The 
DataSocket functions are accessed through the LabVIEW>>Functions>>Communications>>DataSocket subpalette. 
 

 
 
Figure 16 DataSocket Client Example Diagram: This example demonstrates the simple opening of a DataSocket reference, then looping 
on a DataSocket Read while updating display of three variables. The example could be used to view SOAR weather remotely by simply 
changing the URL location in the Open VI to point to the SOAR DataLogger server address. 
 



VIServer: Is a method in LabVIEW to remotely load and manipulate LabVIEW VIs and global variables using references 
rather than wires. An example is shown in fig. X. 
 

 
Figure 17 VIServer Example Diagram: The VIServer functionality is invoked by opening a named reference, then wiring in one or more 
property and/or invoke nodes. This is an object-oriented method that SOAR utilizes to create “plug-in” APIs. 
 
The VIServer has setup and configuration utilities to provide for security. 
 

   
 
Figure 18 VIServer Preferences for Configuration, Exported VI List, and Allowed Access List GUIs: The VIServer in SOAR uses the 
setup and configuration panels to insure that only authorized access to command functions is allowed. 
 
 

7. SUMMARY 
 
The prototypes were completed on schedule, meeting all objectives of the design study. The performance of LabVIEW under 
various operating systems was studied. The merits of LabVIEW and it’s capabilities with respect to developing an application 
suite of the complexity and robustness required for a Telescope Control System were well established, both by analysis and 
live demonstration. Of particular note was the robustness of a LabVIEW based TCP/IP communications layer, and the 
stability of LabVIEW – C code interfaces under Real-Time Linux.  
 
The robustness of the SOAR communications layer was demonstrated during resolution of an unexpected problem in the 
STP-1 prototype. One of the laptops had a bad RJ-45 connector for the Ethernet connection. Debugging the problem lead to 
plugging and unplugging the connector over a dozen times. The demonstration was still running and each time the connector 
was unplugged the software smoothly dropped the client-server connection and re-established a new connection as soon as 
the physical connection was re-established. This occurred on the Mount simulator, which tracked to the last requested 
position, then paused. As soon as the connection was re-established it would slew to the new demand, then track as normal. 
 
The Linux version of the TCS application ran flawlessly for several days in preliminary testing, never missing or delaying a 
single 20 Hz update. 
 
Several issues related to software and OS selection were established: 
(1) The most features are available under the WindowsNT OS. This is due mainly to ActiveX, which is not (currently) 
available under any other OS. This is slowly changing, as more of the ActiveX based functionality is being ported to native 
LabVIEW code. (2) The best stability and timing regularity was achieved under the Linux OS. (3) The LabVIEW 
environment utilizes the full bandwidth of Ethernet. In the prototypes this was 10BaseT. The final TCS will be implemented 
using Fast Ethernet in 100BaseT and Optic Fiber. (4) The Gemini kernel code runs with Linux better than NT. Further, the 
source code is more difficult to compile in the NT environment. Modifications were required, whereas the code compiled 
easily with no modifications under Linux. Accordingly, the TCS shall utilize both Linux (TCS Application and Instrument 
Control) and NT (DataLogger and TCS GUIs) depending on the requirements of the specific module(s). (5) The complex 



sequences involved in startup, shutdown and state transitions of the telescope shall require a scripting language, in LabVIEW, 
which can automate the running of the TCS software and be modifiable by non-LabVIEW literate personnel. This will be 
provided by Imaginatics’ “G’Script” scripting package. 
 
Final specification of the TCS suite is completed and implementation of the TCS and DataLogger is underway and expected 
to be completed in late 2000 / early 2001. 
 
1. T. Sebring, G. Cecil, G. Moretto, The SOAR Telescope Project: A Four-Meter Telescope Focused on Image Quality, 

SPIE 1998. 
2. M. Ashe, The SOAR Telescope Control System Prototype-I in LabVIEW, NOAO Report, Feb 1999 
3. G. Schumacher, SOAR Concept Design Review, June 1998 
4. G. Schumacher, SOAR Board Meeting Review, Mar 2000 


