
MCB developer notes
Otger Ballester, Laia Cardiel Sas

August 9, 2010

Document Version: 1.02

MCB Hardware described: 1.2

MCB firmware version described: 5.12

1

Contents Contents

Contents

1 Board Functional Description 9
1.1 Purpose of Board . 9
1.2 Interface Description . 9

1.2.1 Slink Interface . 9
1.2.2 Clock Distribution . 9
1.2.3 Sequencer Bus Interface . 10

1.2.3.1 Reset Transactions . 10
1.2.3.2 Write Transactions . 11
1.2.3.3 Read Transactions . 11

1.2.4 Pixel Data Bus Interface . 11
1.2.5 Synchronization Interface . 12
1.2.6 JTAG Interface, Reset and Power on Boot. 14
1.2.7 Front Panel Indicators . 14

1.3 Register Map / Control Functions . 15
1.3.1 FW constants . 17
1.3.2 Former Sequencer fpga registers description 18

1.3.2.1 Integration Time Register (ADDR_SEQINTEGTIME) 18
1.3.2.2 Test Counter Register (ADDR_COUNTREG) 18
1.3.2.3 Clock Enable Register (ADDR_CLOCKEN) 19
1.3.2.4 Integration Timer Counter (ADDR_SEQACTINTTIM) 19
1.3.2.5 Sequencer Command Register (ADDR_SEQCMDREG) 19
1.3.2.6 Sequencer Loop Counters (ADDR_RANGE_SEQLOOP) 20
1.3.2.7 Sequencer Pattern Memory Space (ADDR_RANGE_SEQPATMEM) 20
1.3.2.8 Sequencer Program Code Memory Space (ADDR_RANGE_SEQPRGMEM) 20
1.3.2.9 MCB Sequencer LED Indicator Control Register (ADDR_SEQ_LED) 20
1.3.2.10 Silicon Serial Number Register (ADDR_BOARDSERIAL) 20
1.3.2.11 Board Temperature Register (ADDR_BOARDTEMP) 21
1.3.2.12 MCB Control Register (ADDR_SEQCTLREG) 21
1.3.2.13 MCB Status Register (ADDR_SEQSTATUS) 22
1.3.2.14 MCB Board Identity Code (ADDR_BOARDIDREG) (ADDR_SOFTRESET) 22
1.3.2.15 MCB Firmware Code Revision (ADDR_FWVERDEC)(ADDR_RELOADFW) 22
1.3.2.16 System Clock Phase Control Register (ADDR_CLKCTRLDEC) . . 22
1.3.2.17 Sync Phase Control Register (ADDR_SYNC_DELAY) 23
1.3.2.18 Synchronization ports selector controller (ADDR_SWITCHES) . 23

1.3.3 Former Pixel fpga registers description 24
1.3.3.1 Pixel FPGA LED Indicator Control Register (ADDR_LEDLATCH) 24
1.3.3.2 Synchronization Link Serial Bit Register (ADDR_EXTDATALATCH) 24

1.3.4 Slink Statistics registers . 24
1.3.4.1 Received Data Words (ADDR_SLINK_SRDW) 24
1.3.4.2 Received Control Words (ADDR_SLINK_SRCW) 24
1.3.4.3 Sent Data Words (ADDR_SLINK_SXDW) 24
1.3.4.4 Sent Control Words (ADDR_SLINK_SXCW) 25
1.3.4.5 Transferred Data Pages (ADDR_SLINK_SXDP) 25
1.3.4.6 Transferred Control Pages (ADDR_SLINK_SXCP) 25
1.3.4.7 Transferred Data Complete Pages (ADDR_SLINK_SXDCP) . . . 25
1.3.4.8 Transferred Control Complete Pages (ADDR_SLINK_SXCCP) . 25
1.3.4.9 Link Full flag Errors (ADDR_SLINK_SLFFE) 25
1.3.4.10 Link Down Errors (ADDR_SLINK_SLDE) 25
1.3.4.11 Up Time minutes (ADDR_SLINK_SUTM) 25

3

Contents Contents

1.3.4.12 Up Time seconds (ADDR_SLINK_SUTS) 25
1.3.4.13 Page Length Info (ADDR_SLINK_IPL) 25
1.3.4.14 Max Wait Info (ADDR_SLINK_IMW) 25

1.3.5 Microcode only registers . 26
1.3.5.1 MPU SEQUENCER Enables Register (SEQ_ENBLREG) 26

2 Board Hardware Description 29
2.1 Power Supplies . 29
2.2 Logic Section . 29

2.2.1 Clock Generation . 29
2.2.2 Reset and FPGA Boot Logic . 30

2.2.2.1 Jumper ST3 . 30
2.2.3 JTAG Interface . 30
2.2.4 Options for Building the MCB . 30

3 Board Specifications 31

4 Appendix 33
4.1 Appendix I - Board Identity and Firmware Revision Codes. 33
4.2 Appendix II - Using the MONSOON SYNC Function 33

4.2.1 Introduction . 33
4.2.2 MONSOON Implementation . 34
4.2.3 Sample Assembler Code for Synchronized DHE Function 34

4.3 Appendix III – Master Control Board Sequencer MPU Description 37
4.3.1 Introduction . 37
4.3.2 Sequencer Performance . 37
4.3.3 Sequencer Interface . 37
4.3.4 Architecture Overview . 38
4.3.5 Program Memory (BRAM) . 39
4.3.6 Pattern Memory (BRAM) . 39
4.3.7 Stack RAMs (Select-RAM) . 39
4.3.8 Special Function Registers . 39

4.3.8.1 Command Register Definition 40
4.3.8.2 Bit 0: Unconditional Jump 40
4.3.8.3 Bit 1: SYNC_IN . 40
4.3.8.4 Bit 2: Integration Timer Terminal Count 40
4.3.8.5 Bit 3: Start Exposure Active High 40
4.3.8.6 Bit 4 to Bit 11: Start Exposure vector 40
4.3.8.7 Bit 12 to Bit 15: User Defined Bit Pattern 40

4.3.9 Control Register Definition . 40
4.3.9.1 Bit 0: MPU Run: . 41
4.3.9.2 Bit 1: PAUSE ITC: . 41
4.3.9.3 Bit 3 & bit 2: Sequencer Clock Pre-Scalar 41
4.3.9.4 Bits 4-14: Currently Not Used 41
4.3.9.5 Bits 15: Slave DHE . 41

4.3.10 Loop Count Registers . 41
4.3.10.1 Enable Function Register (EFR) 41
4.3.10.2 Integration Time Register and Control 42

4.3.11 Clock Control . 42
4.3.12 Decode Execution Unit (DEU) . 42

4.3.12.1 Program Address Multiplexer 42
4.3.12.2 Program Counter Control Logic 43

4

Contents Contents

4.3.12.3 Instruction Multiplexer . 43
4.3.12.4 Pattern Pointer Control Logic 43
4.3.12.5 Output Registers and Control Logic 43
4.3.12.6 Program Counter Stack Control Logic 43
4.3.12.7 Loop Control Logic . 43
4.3.12.8 EFR Write Decode . 43
4.3.12.9 Delay Control Logic . 43

4.3.13 Instruction Set for the Sequencer . 44
4.3.14 Output Instructions . 45

4.3.14.1 LPP: Load Pattern Pointer: 4 Nibble (16 bit) 45
4.3.14.2 IPP: Increment Pattern Pointer: 1 Nibble (4-bit) 45
4.3.14.3 DPP: Decrement Pattern Pointer: 1 Nibble (4-bit) 45
4.3.14.4 LDA: Load Device Address (12-bit) 45
4.3.14.5 LMR: Load Mode Register 3 Nibble (12-bit) 45
4.3.14.6 LSR: Load Select Register 3 Nibble (12-bit) 46

4.3.15 Control Instructions . 46
4.3.15.1 CAL: Call Subroutine: 4 Nibble (16 bit) 46
4.3.15.2 RET: Return 1 Nibble (4-bit) 46
4.3.15.3 JCB: Jump if Control Bit Set. 5 Nibble (20-bit) 46
4.3.15.4 LRB: Loop Begin 2 Nibble (8-bit) 46
4.3.15.5 LPB: Loop Begin 1 Nibble (4-bit) 46
4.3.15.6 LPE: Loop End 1 Nibble (4-bit) 47

4.3.16 Delay Instructions . 47
4.3.16.1 DMS: Delay Milliseconds 3 Nibble (12-bit) 47
4.3.16.2 DuS: Delay Microseconds 3 Nibble (12-bit) 47
4.3.16.3 DSC: Delay System Clock 3 Nibble (12-bit) 47
4.3.16.4 NOP: No Operation 1 Nibble (4-bit) 47

4.4 Appendix IV – Synthetic Pixel Generator . 48
4.4.1 Simulation Mode Register (SIM_MODE) 48
4.4.2 Simulation Pixel Rows Register (SIM_PIXROWS) 50
4.4.3 Simulation Pixel Columns Register (SIM_PIX COLS) 50
4.4.4 Simulation Pixel Time Register (SIM_PIXTIME) 50
4.4.5 Simulation Channels Register (SIM_CHANNELS) 50
4.4.6 Simulation Delay Register (SIM_DELAY) 50
4.4.7 Simulation Integration Register (SIM_INTEGRATE) 50
4.4.8 Simulation Fowler Register (SIM_FOWLER) 50
4.4.9 Simulation Pipe Register (SIM_PIPE) 50
4.4.10 Limitations of the Pixel Generator . 51
4.4.11 Sample Configuration File Setup . 51

4.5 Appendix V – csv file for MCB . 51
4.6 Appendix V – Firmware History . 53

5

Contents Contents

Preface
This document describes the hardware implementation of the Master Control Board made at
Barcelona, Revision 1.2, that boots the firmware revision 5.0 and later. Minor revisions and
modifications to the capabilities and functionality of this board can be added as an appendix
to this document.

Document Scope
This document provides an overall description, as well as detailed information, on the ar-
chitecture, configuration, testing and functionality of the MONSOON Master Control Board
(MCB). It is intended that this document be read by anyone who needs to consider, build,
use, or test a MONSOON system that requires this hardware module.
This document is an adaptation of MNSN-AD-08-0001 to the MCB HW and FW versions

developed at IFAE (Barcelona) for the DES project.
If you find some error or some section is not well explained contact Otger Ballester (ot-

ger@ifae.es) or Laia Cardiel (laia@ifae.es), we will do our best to help.
To diferentiate between boards, when I write about the old MCB board developed at

NOAO I will call it NOAO MCB.

7

mailto:otger@ifae.es
mailto:otger@ifae.es
mailto:laia@ifae.es

1 BOARD FUNCTIONAL DESCRIPTION 1.2 Interface Description

1 Board Functional Description
1.1 Purpose of Board
The Master Control Board (MCB) provides the essential control and communication functions
required by the detector head electronics (DHE). Every MONSOON DHE chassis requires
just one MCB that must reside in the ‘SYSTEM’ slot or ‘Slot 1’ of the PCI backplane.
This board provides the interface for communication between the Pixel Acquisition Node

(PAN) and the DHE electronics. It controls the unidirectional Sequencer Bus on the back-
plane and provides a programmable sequencer (SEQUENCER MPU) to control DHE func-
tions independently of the PAN to support detector functions. It also provides for DHE
clock distribution and a mechanism to synchronize multiple DHE chassis. All communica-
tion, control and sequencing functions are built from firmware contained in a Xilinx virtex 4
fpga.

1.2 Interface Description
1.2.1 Slink Interface

The MCB provides a seat for an Slink fiber optic CMC module using connector J6. The
Slink module provides a bi-directional fiber optic link to the Pixel Acquisition Node (PAN).
All communication with the PAN is through this link.

ToDo: Add more info about Slink implementation, data paths,....

1.2.2 Clock Distribution

The MCB controls the activity of peripheral boards by enabling or disabling the system clock
to them. This allows boards that are not specifically required during some periods to shut
down to conserve power or reduce induced noise from their activities.
Control of this interface is by directly writing to the clock enable register of the MCB (at

address 0x0100).
Because of some non-standardization within the cPCI specification, some peripheral boards

share common clocks. Tables 1 and 2 map the control word written to the clock enable register
to physical peripheral boards.
Writing a ‘one’ to the respective bit in the clock enable register turns that clock source on.

Table 1: Clock Distribution Control Bit Assignments for 8-Slot Backplanes
Control Word Bit Backplane Signal Peripheral Board Clocks

0 Not used, always active
1 CLK23 Board 2 and 3 active
2 CLK23 Board 2 and 3 active
3 CLK45 Board 4 and 5 active
4 CLK45 Board 4 and 5 active
5 CLK6 Board 6 active
6 CLK7 Board 7 active
7 CLK8 Board 8 active
15 BKPLN_SLCT Set high for 8-slot backplane mapping

9

1.2 Interface Description 1 BOARD FUNCTIONAL DESCRIPTION

Table 2: Clock Distribution Control Bit Assignments for 6-Slot Backplanes
Control Word Bit Backplane Signal Peripheral Board Clocks

0 Not used, always active
1 CLK2 Board 2 and 3 active
2 CLK3 Board 2 and 3 active
3 CLK4 Board 4 and 5 active
4 CLK5 Board 4 and 5 active
5 CLK6 Board 6 active
15 BKPLN_SLCT Set low for 6-slot backplane mapping

The appropriate mapping for 8-Slot or 6-Slot backplanes is set by bit 15 of the register:
Setting this bit high enables mapping for 8-Slot backplanes. When this bit is set low, the
mapping is enabled for 6-Slot backplanes.

1.2.3 Sequencer Bus Interface

The Master Control Board controls all activity on the Sequencer Bus. This bus is unidirec-
tional, away from the MCB, and controls all peripheral DHE boards on the backplane. Bus
activity is synchronous to the rising edge of the system clock.
There are four groups of signals that make up the Sequencer Bus: eight bits of board

select (/SEL2 TO /SEL8), two bits of mode (SEQ_MODE[1:0]), six bits of device address
(DEV_ADDR[5:0]), and 32 bits of data (SEQ_DATA[31:0]).
The SEQ_MODE[1:0] signals allow three types of bus transactions, reset, write and read.

These are detailed in Table 3.

Table 3: Sequencer Bus Mode Bit Definitions
Mode Bits Transaction Mode Description

00 Reset Hard or Soft Reboot FPGA or soft reset the addressed
board depending on SEQ_DEVADDR[2:0]

bits.
01 Read 32 Bits Read a word from the addressed board
10 Write 16 Bits Write a 16-bit word to the addressed board
11 Write 32 Bits Write a 32-bit word to the addressed board

The board select bits (/SEL2 TO /SEL8) are used to activate a board for a bus transaction.
It is legal for multiple board select lines to be active for a reset or write transaction but only
a single board select can be active for a read transaction.
A reset or write transaction takes one clock cycle and a read transaction takes three clock

cycles to complete.

1.2.3.1 Reset Transactions Reset mode is similar in timing to a write transaction.
Setting all bits of the SEQ_DEVADDR[5:0] signals high results in a reboot of the FPGA on

the selected board and all configuration data is set to default values.
Setting the SEQ_DEVADDR[5:0] signals low during a reset transaction performs a ‘soft

reset’ of the board, only the functionality is reset (i.e. state machines, etc.) and current

10

1 BOARD FUNCTIONAL DESCRIPTION 1.2 Interface Description

configuration data is preserved.

NOTE: At this time Sequencer bus data content has no significance in the reset transaction.

1.2.3.2 Write Transactions Only the lowest sixty four memory locations (0x0000 to 0x003F)
of a peripheral board can be written to in 32-bit mode. In this mode the SEQ_DEVADDR[5:0]
signals carry the address information to the peripheral board. Data is carried on signals
SEQ_DATA[31:0]. The data is written into the peripheral board on the rising edge of the
board SYSCLK when /SELn is set true.
When writing 16-bit data, the address on the peripheral board is carried in the most

significant 16 bits of the sequencer data bus (SEQ_DATA[31:16]) signals and data contained
in the least significant bits (SEQ_DATA[15:0]).

ToDo: Add diagram showing 16bit and 32 bit writes.

1.2.3.3 Read Transactions During a read transaction, a ‘write’ is performed to the pe-
ripheral board with the required board address contained in the least significant 16 bits of
the sequencer bus signals (SEQ_DATA[15:0]). Two clock cycles are allowed for the peripheral
board to decode the address and put the requested data onto the Pixel Data Bus; Then
the topPixFpga module input control line seqWrite_n is taken true by the PAN command
decode logic and data from the pixel data bus is latched into the Pixel Bus FIFO.
An additional set of signals, Peripheral Board Acknowledge Strobes (bp_ack(8:2)), is

defined for this bus. Currently, these signals are not used.

1.2.4 Pixel Data Bus Interface

The Pixel Data Bus (PIX_DATA[47:0]) transfers data from peripheral boards to the MCB
and from there to the PAN by way of the Slink link. It is a unidirectional 48-bit bus that
connects to a 128-word FIFO (Pixel Bus FIFO) within the pixel FPGA. Data loaded into
this FIFO is transmitted directly to the PAN by way of the Slink Interface. Data present on
the Pixel Data Bus is loaded into this FIFO by two methods:

• If the data is in response to a decoded read command from the PAN, the signal
seqWrite_n is used to strobe data into the FIFO with timing controlled by the Pan
Decode logic.

• If the data is pixel data generated by a peripheral board then data is loaded into the
FIFO on the rising edge of the system clock when any of the seven /pipe_req_n[6:0]
signals and signal /pipe_wrt_n are active.

This facility allows a peripheral board (Video Acquisition Board) to burst transfer pixel data
to the PAN. There is a priority scheme associated with the use of this feature that is handled
by the peripheral boards themselves.

11

1.2 Interface Description 1 BOARD FUNCTIONAL DESCRIPTION

1.2.5 Synchronization Interface

Figure 1: Synchronization Connectors

To allow multiple DHE chassis to act in unison, two connectors are provided to enable tight,
clock cycle-level synchronization. J3 accept externally generated synchronization signals and
J4 drive synchronization signals out to other DHE chassis in the daisy chain.
There are two synchronization signals, EXTCLK and EXTSYNC, that are driven and received

as PECL logic levels. In a multiple DHE configuration, one DHE acts as master and generates
the EXTCLK from the system clock source.
The driven signals from a DHE can be adjusted in phase writing to MCB registers to

provide phase match of DHE chassis. Both sync and clock signals can be adjusted. Each one
has its own register:

• To adjust clock phase, register ADDR_CLKCTRLDEC must be used.

• To adjust sync phase, register ADDR_SYNC_DELAY must be used.

Figure 2: Clock Path

Setting an MCB as master or slave is controlled by setting bit 4 inthe MCB control register
(ADDR_SEQCTLREG)1. This provides the basic mechanism to begin control processes run by the
MPU Sequencer in synchronization with each other.

1In old releases of the MCB (both NOAO or Barcelona) this was selected using jumpers on the board.

12

1 BOARD FUNCTIONAL DESCRIPTION 1.2 Interface Description

This bit automatically selects which signals arrives to the fpga. When MCB is set as
master, internal oscillator clock feeds fpga sysclk. Else, when set as slave, sysclk is feed by
external clock. We’ve added a backup clock which goes to another clock buffer of the fpga2.
From figure 2 we can see that the clock that can be seen on the front panel lem0 connector is
the same that goes to the fpga. This is to be able to adjust clock phase between crates with
an oscilloscope.

Figure 3: Sync Path

The sinc signal path is similar to the clock path, but when the MCB is set as Master, the
signal it is generated inside of the fpga. Front panel lem0 connector is to see the signal which
goes to the fpga after the delay chip.3

In addition, the SEQUENCERMPU code should be able to use the sync signal that appears
in the sequencer command register (ADDR_SEQCMDREG) and set the master flag in the MCB
control register.

A slow and simple daisy-chained serial data interface is available for inter-DHE commu-
nication. There is one serial data in and one serial data out port assigned to the respective
synchronization connectors. The protocol, and therefore internal logic, to control these has
not yet been defined. However, there is a simple one bit interface available through the
ADDR_EXTDATALATCH register which can be used to set the output bit and read the input bit.

2In a near future firmware release is planned to implement a backup system which will track if system is
receiving clock signal while set as slave. To be able to recover the system in case it is set as slave but it
doesn’t get clock through ext_clk. This will be configurable (it could be disabled, set how many seconds
it must wait without clock signal before changing from extern clock to intern oscillator clock,...)

3In future firmware release we plan to add a delay setting mode which will output an slow clock through the
sync path, just to be able to adjust the delay.

13

1.2 Interface Description 1 BOARD FUNCTIONAL DESCRIPTION

1.2.6 JTAG Interface, Reset and Power on Boot.

Figure 4: Jtag interface

The programmable logic device that contain all the logic for the MCB is accessible for pro-
gramming and limited diagnostics by the JTAG connector J7.
Firmware reloading and initialization cycle can be initiated manually by pressing the

front panel reset button (U5) and by PAN command by writing to the (ADDR_RELOADFW or
ADDR_REPROGRAM) register. Figure 5 shows hardware implementation of the reload firmware.
When a reprogram command is received by the MCB #PROGRAM signal is set after 100ms.

#PROGRAM is captured by a latch and it goes to a monostable which will maintain this signal
active enough time to reload the firmware.

Figure 5: Firmware reload from fpga

1.2.7 Front Panel Indicators

There are two front panel single LED indicators used for basic diagnostics of the board. D4
is controlled by firmware in the Pixel FPGA and D3 by firmware in the Sequencer FPGA.
During power up, each indicator is off until the firmware for the respective FPGA has been

booted and started. After booting their respective code, the indicators will be steadily on
until an asynchronous command has been sent from the PAN node to synchronize the com-
munication link. At this time both indicators will go out until programmed to indicate some

14

1 BOARD FUNCTIONAL DESCRIPTION 1.3 Register Map / Control Functions

functionality through their respective control registers (ADDR_LEDLATCH, ADDR_SEQ_LED). Ta-
ble 4 lists the functionality that is provided.

Table 4: Front Panel Indicator Functions
ADDR_LEDLATCH ADDR_SEQ_LED

BIT Function BIT Function
0 FPDP TM Write Request Active 0 FPDP /TA_DVALID Flag True
1 Funct. Cmd. Decoder Active 1 PAN Seq. Bus Access Request
2 Pixel Data Request Active 2 MPU Seq. Bus Access Request

NOTE: right now, 3 led tower leds are assigned to some debug signals (If red led is ON don’t
worry). Next firmware release will come with more functionality (disable leds, show
disabled slink leds,..)

1.3 Register Map / Control Functions
All control functions that the MCB is capable of are initiated by writing to specific memory
locations on the MCB. The board address for the MCB is always 1. For details on the format
of the data written to the DHE from the PAN, please refer to document MNSN-AD-01-0004
R 1.0 ICD 6.0 Generic DHE Command and Data Stream Interface.
A summary of the memory space for the MCB is dispalyed in Table 5 followed by a more

detailed description of each function.

Table 5: MCB Memory Map
Address Range FW Name Description
0x0000 ADDR_SEQINTEGTIME Requested Integration time
0x0001 ADDR_COUNTREG Test Data Generator
0x0100 ADDR_CLOCKEN Clock Enable Register
0x0101 ADDR_SEQACTINTTIM Actual Integration Time
0x0102 ADDR_SEQCMDREG Sequencer MPU Command Reg
0x0110 0x011f ADDR_RANGE_SEQLOOP Sequencer MPU loop Registers
0x0200 0x03ff ADDR_RANGE_PIXCMD Pixel command Range
0x0200 0x027f ADDR_RANGE_SCONF Serial config Port (Write to 0x027f

triggers write to eeprom)
0x0280 ADDR_SERFETCH Serial config fetch (Write triggers a

read cycle of eeprom)
0x0281 ADDR_CLKCTRLDEC Clock Phase Port
0x0282 ADDR_LEDLATCH LED Port enable register
0x0286 ADDR_EXTDATALATCH External data port
0x02d0 ADDR_PIXROWREG Simulation
0x02d1 ADDR_PIXCOLREG Simulation
0x02d2 ADDR_PIXTIMEREG Simulation
0x02d3 ADDR_PIXCHANREG Simulation
0x02d4 ADDR_PIXDLYREG Simulation
0x02fc ADDR_PIXCTLREG Pix FPGA Control register

15

1.3 Register Map / Control Functions 1 BOARD FUNCTIONAL DESCRIPTION

Address Range FW Name Description
0x02ff ADDR_FWVERHEX Firmware version (makes sense in

hex)
0x0300 0x031f ADDR_RANGE_SLINK Address range for Slink Statistics

registers
0x0300 ADDR_SLINK_SRDW_L Received data words (16 LSB)
0x0301 ADDR_SLINK_SRDW_H Received data words (16 MSB)
0x0302 ADDR_SLINK_SRCW_L Received Control Words (16 LSB)
0x0303 ADDR_SLINK_SRCW_H Received Control Words (16 MSB)
0x0304 ADDR_SLINK_SXDW_L Sent Data Words (16 LSB)
0x0305 ADDR_SLINK_SXDW_H Sent Data Words (16 MSB)
0x0306 ADDR_SLINK_SXCW_L Sent Control Words (16 LSB)
0x0307 ADDR_SLINK_SXCW_H Sent Control Words (16 MSB)
0x0308 ADDR_SLINK_SXDP_L Sent Data Pages (16 LSB)
0x0309 ADDR_SLINK_SXDP_H Sent Data Pages (16 MSB)
0x030a ADDR_SLINK_SXCP_L Sent Control Pages (16 LSB)
0x030b ADDR_SLINK_SXCP_H Sent Control Pages (16 MSB)
0x030c ADDR_SLINK_SXDCP_L Sent Data Complete Pages (16 LSB)
0x030d ADDR_SLINK_SXDCP_H Sent Data Complete Pages (16

MSB)
0x030e ADDR_SLINK_SXCCP_L Sent Control Complete Pages (16

LSB)
0x030f ADDR_SLINK_SXCCP_H Sent Control Complete Pages (16

MSB)
0x0310 ADDR_SLINK_SLFFE Full Flag errors
0x0311 ADDR_SLDE Link Down errors
0x0312 ADDR_SLINK_SUTM Minutes since power up
0x0313 ADDR_SLINK_SUTS Seconds since change in

ADDR_SLINK_SUTM
0x0314 ADDR_SLINK_IPL Configuration of Slink, Page length

in Words
0x0315 ADDR_SLINK_IMW Configuration of Slink, Max Wait in

clock cycles before closing an
incomplete page

0x0600 ADDR_PCB_VERSION PCB revision
0x0601 ADDR_SYNC_DELAY Sync Delay register
0x0666 ADDR_REPROGRAM When write MCB FPGA is

reprogramed
0x1000 0x1bff ADDR_RANGE_SEQPATMEMSequencer pattern memory
0x4000 0x43ff ADDR_RANGE_SEQPRGMEMSequencer program memory
0xfff8 ADDR_SWITCHES Register to configure clock and sync

switches
0xfff9 ADDR_SEQ_LED Led indicator select
0xfffa ADDR_BOARDSERIAL Circuit Board Serial number
0xfffb ADDR_BOARDTEMP Temperature register
0xfffc ADDR_SEQCTLREG Control Register
0xfffd ADDR_SEQSTATUS Status Register
0xfffe ADDR_BOARDIDREG Board ID Register (Read)

ADDR_SOFTRESET Issue a soft reset to fpga firmware
(Write)

16

1 BOARD FUNCTIONAL DESCRIPTION 1.3 Register Map / Control Functions

Address Range FW Name Description
0xffff ADDR_FWVERDEC Firmware version (makes sense in

decimal) (Read)
ADDR_RELOADFW Reload fpga firmware from eprom

(Write)

1.3.1 FW constants

Next, a listing of the current constantsPkg.vhd file can be found. This is a live include of the
working copy of the file, nothing is more up to date than this listing4.

library ieee;
use ieee.std_logic_1164.all;

package constantsPkg is

-- Constants
constant PCB_VERSION : std_logic_vector (15 downto 0) := x"0102";

-- MASTER CONTROL BOARD PART NUMBER (0400)
constant BOARDID : std_logic_vector (15 downto 0) := x"0190";
-- VERSION 5.11
constant FWVERDEC : std_logic_vector (15 downto 0) := x"0201";
constant FWVERHEX : std_logic_vector (15 downto 0) := x"0513";

-- adresses (pixel registers: 0x0200 ->0x03FF)

-- Slink Stats Range (0x0300 -> 0x31f) (Some spares)
constant ADDR_RANGE_SLINK : std_logic_vector (15 downto 5) := x"03" & "000";
-- statsRcvdDatWrd
constant ADDR_SLINK_SRDW_L : std_logic_vector (15 downto 0) := x"0300";
constant ADDR_SLINK_SRDW_H : std_logic_vector (15 downto 0) := x"0301";
-- statsRcvdCtlWrd
constant ADDR_SLINK_SRCW_L : std_logic_vector (15 downto 0) := x"0302";
constant ADDR_SLINK_SRCW_H : std_logic_vector (15 downto 0) := x"0303";
-- statsXferDatWrd
constant ADDR_SLINK_SXDW_L : std_logic_vector (15 downto 0) := x"0304";
constant ADDR_SLINK_SXDW_H : std_logic_vector (15 downto 0) := x"0305";
-- statsXferCtlWrd
constant ADDR_SLINK_SXCW_L : std_logic_vector (15 downto 0) := x"0306";
constant ADDR_SLINK_SXCW_H : std_logic_vector (15 downto 0) := x"0307";
-- statsXferDatPag
constant ADDR_SLINK_SXDP_L : std_logic_vector (15 downto 0) := x"0308";
constant ADDR_SLINK_SXDP_H : std_logic_vector (15 downto 0) := x"0309";
-- statsXferCtlPag
constant ADDR_SLINK_SXCP_L : std_logic_vector (15 downto 0) := x"030a";
constant ADDR_SLINK_SXCP_H : std_logic_vector (15 downto 0) := x"030b";
-- statsXferDatCPag
constant ADDR_SLINK_SXDCP_L : std_logic_vector (15 downto 0) := x"030c";
constant ADDR_SLINK_SXDCP_H : std_logic_vector (15 downto 0) := x"030d";
-- statsXferCtlCPag
constant ADDR_SLINK_SXCCP_L : std_logic_vector (15 downto 0) := x"030e";
constant ADDR_SLINK_SXCCP_H : std_logic_vector (15 downto 0) := x"030f";
-- statsLFFErr
constant ADDR_SLINK_SLFFE : std_logic_vector (15 downto 0) := x"0310";
-- statsLDownErr
constant ADDR_SLINK_SLDE : std_logic_vector (15 downto 0) := x"0311";
-- statsUpTimeMin
constant ADDR_SLINK_SUTM : std_logic_vector (15 downto 0) := x"0312";
-- statsUpTimeSec
constant ADDR_SLINK_SUTS : std_logic_vector (15 downto 0) := x"0313";
-- infoPageLength
constant ADDR_SLINK_IPL : std_logic_vector (15 downto 0) := x"0314";
-- infoMaxWait
constant ADDR_SLINK_IMW : std_logic_vector (15 downto 0) := x"0315";

-- SerConfigIFC (0x0200 ->0x027f)
-- I’ve deleted serconfigIfc. when I implement it again
-- but interfacing 1-wire protocol chip I will use it again
constant ADDR_RANGE_SCONF : std_logic_vector (15 downto 7) := x"02" & ’0’;
-- serial eeprom control register
constant ADDR_SERFETCH : std_logic_vector (15 downto 0) := x"0280";

-- ExtDataLatch
constant ADDR_EXTDATALATCH : std_logic_vector (15 downto 0) := x"0286";

-- LedLatch
constant ADDR_LEDLATCH : std_logic_vector (15 downto 0) := x"0282";

-- pixCmdDec
constant ADDR_PIXROWREG : std_logic_vector (15 downto 0) := x"02d0";
constant ADDR_PIXCOLREG : std_logic_vector (15 downto 0) := x"02d1";

4In case of doubt, if the register you are looking for has not the same address in the table above and in this
listing, trust the listing (and please inform me so I can correct it).

17

1.3 Register Map / Control Functions 1 BOARD FUNCTIONAL DESCRIPTION

constant ADDR_PIXTIMEREG : std_logic_vector (15 downto 0) := x"02d2";
constant ADDR_PIXCHANREG : std_logic_vector (15 downto 0) := x"02d3";
constant ADDR_PIXDLYREG : std_logic_vector (15 downto 0) := x"02d4";
constant ADDR_PIXCTLREG : std_logic_vector (15 downto 0) := x"02fc";
constant ADDR_FWVERHEX : std_logic_vector (15 downto 0) := x"02ff";

-- clk phase adjustment / clock delay chip
-- constant ADDR_CLKCTRLDEC : std_logic_vector (15 downto 0) := x"0281";

constant ADDR_CLKPHASE : std_logic_vector (15 downto 0) := x"0281";

--
-- CONSTANTS FOR RESET MODES
--

constant ADDR_RELOADFW : std_logic_vector (15 downto 0) := x"FFFF"; -- BOARD CODE REVISION IDENTITY REGISTER
constant ADDR_SOFTRESET : std_logic_vector (15 downto 0) := x"FFFE"; -- BOARD FUNCTIONAL IDENTITY REGISTER

-- adresses (sequencer registers)

constant ADDR_PCB_VERSION : std_logic_vector (15 downto 0) := x"0600";
constant ADDR_SYNC_DELAY : std_logic_vector (15 downto 0) := x"0601";
constant ADDR_REPROGRAM : std_logic_vector (15 downto 0) := x"0666";

-- constant ADDR_EVENTREG : std_logic_vector (15 downto 0) := x"fff0";
constant ADDR_SWITCHES : std_logic_vector (15 downto 0) := x"fff8";
constant ADDR_SEQ_LED : std_logic_vector (15 downto 0) := x"fff9";
constant ADDR_BOARDSERIAL : std_logic_vector (15 downto 0) := x"fffa";
constant ADDR_BOARDTEMP : std_logic_vector (15 downto 0) := x"fffb";
constant ADDR_SEQCTLREG : std_logic_vector (15 downto 0) := x"fffc";
constant ADDR_SEQSTATUS : std_logic_vector (15 downto 0) := x"fffd";
constant ADDR_BOARDIDREG : std_logic_vector (15 downto 0) := x"fffe";
constant ADDR_FWVERDEC : std_logic_vector (15 downto 0) := x"ffff";
constant ADDR_SEQINTEGTIME : std_logic_vector (15 downto 0) := x"0000";
constant ADDR_COUNTREG : std_logic_vector (15 downto 0) := x"0001";
constant ADDR_CLOCKEN : std_logic_vector (15 downto 0) := x"0100";
constant ADDR_SEQACTINTTIM : std_logic_vector (15 downto 0) := x"0101";
constant ADDR_SEQCMDREG : std_logic_vector (15 downto 0) := x"0102";
constant ADDR_STARTEXP : std_logic_vector (15 downto 0) := x"0602";

-- Sequencer adresses ranges

-- Sequencer loop range 0x0110 -> 0x011f
constant ADDR_RANGE_SEQLOOP : std_logic_vector (15 downto 4) := x"011";
-- Sequencer pattern memory range (0x1000 ->0x1bff) can not be described this
-- way. It is hardcoded on Personality module.
constant ADDR_RANGE_SEQPATMEM : std_logic_vector (15 downto 12) := x"1";
-- sequencer programm memory 0x4000 -> 0x43ff
constant ADDR_RANGE_SEQPRGMEM : std_logic_vector (15 downto 10) := x"4"&"00";
-- pixel command range 0x0200 -> 0x03ff
constant ADDR_RANGE_PIXCMD : std_logic_vector (15 downto 9) := x"0" & "001";

end constantsPkg;

1.3.2 Former Sequencer fpga registers description

1.3.2.1 Integration Time Register (ADDR_SEQINTEGTIME) This is a 32-bit register that
holds the absolute time required for an integration. The value is used by the Integration Time
Counter to determine the end of integration for an exposure. If necessary, the register can
be written to with a new value during the integration phase to reflect a change of integration
time. The value written to this register is in units milliseconds. The minimum value is zero
and the maximum 4294967295 (i.e. 1193 hours).

1.3.2.2 Test Counter Register (ADDR_COUNTREG) A 32-bit value written to this register
arms the test counter function. When a START EXPOSURE command is received from the
PAN, the written value of pixels will be sent to the PAN at intervals of 1μs. The data for
each pixel will be the current 32-bit counter value, which is decremented after each pixel is
sent. When the test counter reaches zero, it will become inactive and another value must
be written to the register to repeat the test. Its primary purpose is to provide data path
verification between the MCB to PAN.
It is necessary to prevent the MPU SEQUENCER from responding to the START EXPOSURE

command and sending its own data to the PAN by disabling the MPU SEQUENCER. Dis-
abling the MPU SEQUENCER can be done by writing a zero to the MCB Control Register
(ADDR_SEQCTLREG, see 1.3.2.12 on page 21) bit 0 (SEQ_ENABLE).

18

1 BOARD FUNCTIONAL DESCRIPTION 1.3 Register Map / Control Functions

1.3.2.3 Clock Enable Register (ADDR_CLOCKEN) A 16-bit value written to this register
enables the system clock to each peripheral board slot on the backplane that has a bit set in
the value. The mapping for this function is detailed in Table 1.
Although the backplane and peripheral boards are designed to be synchronous, that is,

they require a clock to perform any transaction or function, peripheral boards have a limited
ability to access their Board Identity Register and Firmware Code revision register without
activating the appropriate clock to that backplane slot. This enables a PAN to determine
which boards and what functionalities are present in the DHE without activating a clock to
each peripheral backplane slot in turn.

1.3.2.4 Integration Timer Counter (ADDR_SEQACTINTTIM) The integration timer counter
is a 32-bit read only register. The counter can be enabled and disabled from the MPU
Sequencer Enables register using microcode. When enabled, the value will increment each
millisecond until the value stored in the Integration Time Register is reached or surpassed. At
this time a flag (SEQ_CMD_ITC) is set in the MPU Sequencer Command register (see 1.3.2.5).
The counter will continue to increment until it is disabled by an MPU Sequencer microcode

instruction. In this way, and assuming the microcode is designed for this, the PAN may read
the actual integration time from this register after integration is complete. This counter can
be ‘paused’ by the PAN by using the appropriate bit (bit 1) in the ADDR_SEQCTLREG register
(SEQ_INTPAUSE) (see 1.3.2.12 on page 21).

1.3.2.5 Sequencer Command Register (ADDR_SEQCMDREG) This 16-bit register provides
the mechanism for conditional branching within the MPU SEQUENCER microcode.
The MPU SEQUENCER instruction set provides one conditional jump command (JCB)

that requires a destination for the jump and a bit number to test. The instruction branches
if the specified bit in the Sequencer Command register is set. Therefore there are 16 possible
branches that can be specified.
The lowest 4 bits (3:0) of the command register are set by hardware. The middle 8 bits

(11:4) are set from the START EXPOSURE command as the required start vector within the
sequencer program code. The last 4 bits (15:12) are written directly from the data value
written to this register from the PAN. Figure 6 illustrates the relative bit positions for the
branch conditions.

LS 4 bits from PAN
write

8 bit vector from PAN
START EXPOSURE comand

SE
RCVD TC EXT

SYNC '1'

Figure 6: MPU SEQUENCER Command Register Structure

• Bit 0 is tied to ‘1’ to provide an unconditional branch instruction (JMP).

• Bit 1 reflects the state of the external SYNC signal used for multiple DHE synchro-
nization.

• Bit 2 is set true whenever the value of the Integration Time Counter is greater than or
equal to the Integration Time Register.

• Bit 3 is set whenever a START EXPOSURE command is received from the PAN. This
indicates that the condition of bits (11:4) has been established. This bit can be reset
by a microcode instruction to the SEQ_ENBLREG (see 1.3.5.1 on page 26).

• Bit 11 to 4 is set by the START EXPOSURE command vector and is used to evaluate what
type of sequence should be carried out by the MPU Sequencer microcode.

19

1.3 Register Map / Control Functions 1 BOARD FUNCTIONAL DESCRIPTION

• Bit 15 to 12 are directly written from the least significant four bits of data during a
PAN write command to this register. These bits may be tested and used to control
modes of functionality within the MPU Sequencer microcode.

1.3.2.6 Sequencer Loop Counters (ADDR_RANGE_SEQLOOP) To provide for looping struc-
tures within the MPU Sequencer microcode, sixteen 16-bit registers are available. Each
register can be tested and branching controlled by the LRB (Loop Register Begin) and LPE
(Loop End) instructions. These registers are static, that is, their value remains unchanged
by the effect of microcode instruction execution.

1.3.2.7 Sequencer Pattern Memory Space (ADDR_RANGE_SEQPATMEM) The MPU SEQUENCER
functionality is controlled by the microcode stored in the Sequencer Program Code Memory
space, however, the data that is actually put onto the Sequencer Bus during MPU SE-
QUENCER control comes from the Sequencer Pattern Memory space. This memory space
appears to the PAN as a 4K x 16-bit word block but is used by the sequencer as 2K x 32-bit
words. This pattern memory contains data that is to be written to peripheral boards at
certain times under control of the microcode. Any memory location on any peripheral board
can be written to with data from the pattern memory. Memory locations on the MCB cannot
be written to under microcode control with the exception of the SEQ_ENBLREG which can
only be written to under microcode control. It alsodoes not appear in MCB Memory space
visible from the PAN.

1.3.2.8 Sequencer Program Code Memory Space (ADDR_RANGE_SEQPRGMEM) The microcode
used to control DHE functionality is stored within this 1K memory block. This memory is
written and read as 16 bits wide, however, the microcode is based on a four-bit word slice so
there is effectively 4K word memory for the MPU SEQUENCER microcode. This memory
space is blocked to the PAN when the MPU sequencer is running (bit 0 of the MCB Control
Register is 1).

1.3.2.9 MCB Sequencer LED Indicator Control Register (ADDR_SEQ_LED) There are three
bits which control the function of the Sequencer FPGA indicator LED (D3). After power
on or a reboot, the indicator will be on permanently until communication with the PAN has
been established. After this, writing to one or more of the control bits will provide a 10ms
indicator flash each time the specific function goes true. The functions that can be assigned
for this are listed in Table 6.

Table 6: MCB Sequencer Led function codes
BIT Function
0 Flash each time a data word is received from the PAN
1 Flash each time the PAN command decode logic

requests use of the sequencer bus
2 Flash each time the MPU Sequencer logic requests use

of the sequencer bus

1.3.2.10 Silicon Serial Number Register (ADDR_BOARDSERIAL) Reading this register re-
turns a 32-bit word that is a unique serial number read from IC8, a ds24335 chip. This chip

5http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2915

20

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2915

1 BOARD FUNCTIONAL DESCRIPTION 1.3 Register Map / Control Functions

consists of a factory-lasered registration number that includes a unique 48-bit serial num-
ber, an 8-bit CRC, and an 8-bit Family Code (23h) plus 4096 bits of user-programmable
EEPROM.
With this register the 32 less significant bits can be read from PAN.

1.3.2.11 Board Temperature Register (ADDR_BOARDTEMP) Reading this register returns a
10-bit signed number that indicates the current ambient temperature of the board. Each
LSB corresponds to 0.25ºC. The temperature is updated continuously and nothing has to be
done to read it. The sensor used is an AD78146.

1.3.2.12 MCB Control Register (ADDR_SEQCTLREG) The MCB Control register provides
overall control of the MPU SEQUENCER. The bit assignments for this register are as follows:

• Bit 0 SEQ_ENABLE: Setting this bit to ‘1’ allows the sequencer to begin decoding and
executing microcode instructions. Whenever the signal is de-asserted, the MPU enters
into the reset state after executing the current instruction. All the board selects and the
Sequencer Bus request signals are masked into non-active state. The program counter
is reset to zero.

• Bit 1 SEQ_INTPAUSE: Setting this bit to ‘1’ will stop the Integration Time Counter
(ITC) from incrementing. Resetting this bit allows the ITC to continue counting up.

• Bit 3 to 2 SEQ_CLKDIV: This 2-bit pattern defines the rate at which the MPU SE-
QUENCER instructions are executed. Note that current firmware runs the MPU SE-
QUENCER at half the system clock frequency with SEQ_CLKDIV set to zero . Each
microcode instruction takes exactly one sequencer clock cycle to complete.

Table 7: MPU Sequencer Instruction Cycle Time
Bits
3 2 Instruction cycle time
0 0 50ns (20 MHz)
0 1 100ns (10 MHz)
1 0 200ns (5 MHz)
1 1 400ns (2.5 MHz)

• Bit 4 DHE_MASTER: When set, this bit establishes the DHE as a master, enables the
output of the external SYNC_OUT signal on J4, and sets the clock and sync selectors
(U8 and U7) to use internal or external signals. In the default state of zero (1), the
DHE is considered a master DHE, the SYNC bit in the CMD register reflects the state
of the SYNC RS Flip Flop controlled through the EFR. When configured as a slave
DHE the external SYNC_IN signal on J3 is routed to the CMD register SYNC bit.

• Bit 5 to7: Currently not used.

• Bit 8 to 15 SEQ_SYNCDELAY: This 8-bit value sets the delay (units of milliseconds)
between the time the MPU SEQUENCER resets the SYNC bit in the EFR until the
hardware signal is emitted by the master DHE. This delay allows sufficient time for

6http://www.analog.com/en/sensors/digital-temperature-sensors/ad7814/products/product.html

21

http://www.analog.com/en/sensors/digital-temperature-sensors/ad7814/products/product.html

1.3 Register Map / Control Functions 1 BOARD FUNCTIONAL DESCRIPTION

slave DHEs to be configured with a start exposure command by their relative PANS
before looking for the SYNC event.

1.3.2.13 MCB Status Register (ADDR_SEQSTATUS) This read-only 16-bit register contains
status information from various functions on the MCB. It is currently not used to any ad-
vantage, although the least significant bits of the MPU Sequencer program counter can be
seen to provide limited feedback on what the microcode is doing.

1.3.2.14 MCB Board Identity Code (ADDR_BOARDIDREG) (ADDR_SOFTRESET) Reading from
this address will return data that will identify this board as a Master Control Board (Code
= 0x0190)
Writing to this address will result in the MCB going through a soft reset cycle. This will

stop the MPU SEQUENCER, load zeros into the Clock Enable and Test Counter registers,
and release the Sequencer Bus. Further information on board identity codes and firmware
revision values can be found in Appendix I.

1.3.2.15 MCB Firmware Code Revision (ADDR_FWVERDEC)(ADDR_RELOADFW) Reading from
this address will return data that will identify the version of firmware running on the MCB.
The format of the data is binary that should be divided by 100d to find the correct revision
number (XX.nn).
Writing to this address will result in the MCB going through a hard reset cycle. This will

set signal BOOT_N true and that will result in a reloading of the firmware .

1.3.2.16 System Clock Phase Control Register (ADDR_CLKCTRLDEC) This register was for-
merly implemented on the pixel fpga firmware. Due to changes in Hardware in new MCBs,
now this register is implemented inside sequencer firmware part.
Writing 8 bits of significant data to this register controls the clock phasing for the syn-

chronization port clock recovery and clock distribution. This functionality is used when two
or more DHE chassis need to be synchronized. Normally, each DHE sources its own clock
to run the logic, however, when multiple DHE chassis are used to control one focal plane it
is important to synchronize their operation to avoid impulse noise sources from each system
interfering with the others.
When using multiple DHE chassis in synchronized operation, one DHE is nominated as

a master and feeds the system clock to the slave DHEs in a daisy chain configuration of
controlled impedance cables. Each slave has two clock skew adjustment regimes that can be
used together to arrive at a sub-nanosecond phase alignment between all DHE chassis.
The DHE system clock is derived from a nominal 40MHz clock source and passed through

a 3d3418-0.57, a digitally programmable delay line to drive the logic.
The clock source for a master DHE is the crystal oscillator. The clock source for a slave

DHE is the LVDS logic receiver which is driven from the EXT_CLK_N and EXT_CLK_P signals
at J3. Clock selection is achieved with chip U7 (ds90cp22mt8, see figure 2 on page 12).
This clock source selector drives the signal to the delay line and to the LVDS driver to sent

out the system clock to the next DHE system using connector J4.
The 3D3418 Programmable 8-Bit Silicon Delay Line product family consists of 8-bit, user-

programmable CMOS silicon integrated circuits. Delay values, programmed via the serial
interface, can be varied over 255 equal steps of 500ps. Units have a typical inherent (address
0) delay of 19.5ns. The input is reproduced at the output without inversion, shifted in
time as per user selection. The 3D3418 is CMOS-compatible, and features both rising- and
falling-edge accuracy.

7http://www.datadelay.com/datasheets/3d3418.pdf
8http://www.national.com/pf/DS/DS90CP22.html

22

http://www.datadelay.com/datasheets/3d3418.pdf
http://www.national.com/pf/DS/DS90CP22.html

1 BOARD FUNCTIONAL DESCRIPTION 1.3 Register Map / Control Functions

A programmable delay controlled by register ADDR_CLKCTLDEC can be applied to control
system clock phase to this local DHE chassis. Delay applied can be calculated as: td =
RegV alue ∗ 0.5ns + 19.5ns

Connector PX1 is a copy of the sysclk signal received by the fpga. This output is easily
plugged into an osciloscope to adjust all DHE systems system clock phases.

1.3.2.17 Sync Phase Control Register (ADDR_SYNC_DELAY) Writing 8 bits of significant
data to this register controls the sync phasing for the synchronization port. This functionality
is used when two or more DHE chassis need to be synchronized.
Normally, each DHE sources its own sync to run the logic, however, when multiple DHE

chassis are used to control one focal plane it is important to synchronize their operation to
avoid impulse noise sources from each system interfering with the others.
When using multiple DHE chassis in synchronized operation, one DHE is nominated as

a master and feeds the sync to the slave DHEs in a daisy chain configuration of controlled
impedance cables. Each slave has two clock skew adjustment regimes that can be used
together to arrive at a sub-nanosecond phase alignment between all DHE chassis.
The DHE sync signal is generated by logic in the fpga and passed through a 3d3418-0.59,

a digitally programmable delay line to drive the logic.
Connector PX2 is a copy of the sync signal received by the fpga. This output is easily

plugged into an osciloscope to adjust all DHE systems system sync phases.

1.3.2.18 Synchronization ports selector controller (ADDR_SWITCHES) This register is used
to configure behavior of synchronization port selector.
Default value at power up sets sync and sysclk selector based upon slave/master configu-

ration on register MCB control register bit 4. If MCB is set as Master, selectors are set to
use local signals, else it is set to use external signals.
This configuration can be overset setting bit 0 of this register.

• AutoSelect Bit (Switches[0]): When set to ’1’, selectors are set to “autoselect”. If
unset (’0’), bits 1 and 2 are used as selectors for sync and sysclk.

• LocalSysClk Bit (Switches[1]): Selects whether we want local sysclk signal (’1’) or
we want external sysclk signal (’0’)

• LocalSync Bit (Switches[2]): Selects whether we want local sync signal (’1’) or we
want external sync signal (’0’)

• CurrLocalSysClk Bit (Switches[3]): (Read only) Current clock selector value

• CurrLocalSync Bit (Switches[4]): (Read only) Current sync selector value.

Resuming:

• For bits 4:1, a ’1’ means local and a ’0’ means external source (coming from sync
interface).

• Bits 1:2 are used only when bit 0 is unset.

• Bits 3:4 may be diferent from bits 1:2 (only when bit 0 is set to ’0’)

9http://www.datadelay.com/datasheets/3d3418.pdf

23

http://www.datadelay.com/datasheets/3d3418.pdf

1.3 Register Map / Control Functions 1 BOARD FUNCTIONAL DESCRIPTION

1.3.3 Former Pixel fpga registers description

1.3.3.1 Pixel FPGA LED Indicator Control Register (ADDR_LEDLATCH) There are three
bits that control the function of the Pixel FPGA indicator LED (D4). After power on or a
reboot, the indicator will be on permanently until communication with the PAN has been
established. After this, writing to one or more of the control bits will provide a 10ms indicator
flash each time the specific function goes true. The functions that can be assigned for this
are listed in Table 8.

Table 8: Pixel LED Indicator Function Codes
MCB_PIXLEDCTL

BIT Function
0 Flash each time a data word (pixel or message) is

written to the Slink FPDP port
1 Flash each time the Pixel FPGA is busy decoding a

PAN CMD (functions with address ranges 0x0200 to
0x02FF).

2 Flash each time a pixel data value is written to the
Slink FPDP port

1.3.3.2 Synchronization Link Serial Bit Register (ADDR_EXTDATALATCH) There is a single
bit available to be written and read by the PAN that is carried across the synchronization
link ports. When reading this function, the data bit is that which appears on pin 1 of J3.
When writing this bit, the data appears on pin 1 of J4. This enables a slow and primitive
data exchange between DHE chassis belonging to the synchronized group.

Note: Currently this port has no function and is reserved for future use.

1.3.4 Slink Statistics registers

All 32 bits registers of slink statistics are splitted in 2 registers of 16 bits. In table 5, there
are several registers address names finished in _L or _H. _L means that this register is the
lower part (i.e. 16 LSB) while _H means that it is the high part (i.e. 16 MSB).
Slink has to type of data, “control” and “data”. “control” words are messages from pan

or answers to messages, while “data” words are simply data (pixel data, data to write to
memory,...)
Slink packs data into pages, which are saved into memory together. When Slink starts to

send data it starts a new page. It closes this pages once it has to send a new type of data
(“data” or “control”) or when it has been idle for some clock periods.

1.3.4.1 Received Data Words (ADDR_SLINK_SRDW) Number of data words received.
32 readable bits.

1.3.4.2 Received Control Words (ADDR_SLINK_SRCW) Number of control words received.
32 readable bits.

1.3.4.3 Sent Data Words (ADDR_SLINK_SXDW) Number of data words sent.
32 readable bits.

24

1 BOARD FUNCTIONAL DESCRIPTION 1.3 Register Map / Control Functions

1.3.4.4 Sent Control Words (ADDR_SLINK_SXCW) Number of control words sent.
32 readable bits.

1.3.4.5 Transferred Data Pages (ADDR_SLINK_SXDP) Number of data pages sent.
32 readable bits.

1.3.4.6 Transferred Control Pages (ADDR_SLINK_SXCP) Number of control pages sent.
32 readable bits.

1.3.4.7 Transferred Data Complete Pages (ADDR_SLINK_SXDCP) Number of data complete
pages sent.
32 readable bits.

1.3.4.8 Transferred Control Complete Pages (ADDR_SLINK_SXCCP) Number of control
complete pages sent.
32 readable bits.

1.3.4.9 Link Full flag Errors (ADDR_SLINK_SLFFE) Contains the number of times, LFF has
been set to true.
16 readable bits.

1.3.4.10 Link Down Errors (ADDR_SLINK_SLDE) Contains the number of times, LDOWN
has been set to true.
16 readable bits.

1.3.4.11 Up Time minutes (ADDR_SLINK_SUTM) System uptime in minutes.
16 readable bits.
Cannot be write nor cleared.

1.3.4.12 Up Time seconds (ADDR_SLINK_SUTS) Seconds since last change in ADDR_SLINK_UTM.
16 readable bits.
Cannot be write nor cleared.

1.3.4.13 Page Length Info (ADDR_SLINK_IPL) Howmany words contains each Page. Trans-
fers are splitted between pages of this length.
16 readable bits.
Cannot be write nor cleared through this address. To set this value, special functions of

the slink must be used. See Slink Interface documentation.

1.3.4.14 Max Wait Info (ADDR_SLINK_IMW) Before closing a page, slink interface waits this
value of clocks to see if more writes are coming.
16 readable bits.
Cannot be write nor cleared through this address. To set this value, special functions of

the slink must be used. See Slink Interface documentation.

25

1.3 Register Map / Control Functions 1 BOARD FUNCTIONAL DESCRIPTION

1.3.5 Microcode only registers

1.3.5.1 MPU SEQUENCER Enables Register (SEQ_ENBLREG) The MPU SEQUENCER
Enables register can only be written to from microcode running on the MPU sequencer. It
allows control over signals directly related to the MPU function. It cannot be read from.
Table 9 outlines the functionality of this register.

26

1 BOARD FUNCTIONAL DESCRIPTION 1.3 Register Map / Control Functions

Table 9: MPU Sequencer Enables Register Bit Definitions
Bit Function Bit Function
31 15 Set SYNC_OUT signal high.
30 14 Set SYNC_OUT signal low
29 13
28 12
27 11
26 10
25 9 Set LSR Auto-cancel feature off
24 8 Set LSR Auto-cancel feature on
23 7
22 6
21 5
20 4
19 3
18 2 Stop Integration Time Counter
17 1 Start Integration Time Counter
16 0 Reset Start Exposure Flag

• Bit 0 Reset SE Flag: Resets the Start Exposure flag in the Command register. This
allows the microcode to avoid re-triggering on this flag when returning from a sequence.

• Bit 1 Start Integration Time Counter: Allows the microcode to elect when to start
timing an exposure.

• Bit 2 Stop Integration Time Counter: Permits the microcode to elect when to stop the
integration timer to accurately register the actual elapsed integration time.

• BIT 7 TO 3 NOT USED.

• Bit 8 Enable a feature of the MPU SEQUENCER that automatically cancels the board
select line one clock cycle after the instruction LSR (Load Board Select Register) has
been issued. This eliminates the need to specifically cancel the board select line in the
microcode itself.

• Bit 9 Disable the automatic canceling feature described above. In this mode, after
each LSR instruction, a zero would normally be written out to deselect the board to
which the pattern memory data was sent. Disabling this feature can be useful to stream
out patterns to a specific board / board address each MPU SEQUENCER clock cycle
by using the INC and DEC microcodes to step through sequential pattern memory
locations.

• BIT 13 TO 10 NOT USED.

• Bit 14 Set SYNC signal Low: Allows control over the sync signal used to synchronize
multiple DHE chassis.

• Bit 15 Set SYNC signal High: Allows control over the sync signal used to synchronize
multiple DHE chassis.

• Bit 31 to 16 Not Used.

27

2 BOARD HARDWARE DESCRIPTION 2.2 Logic Section

2 Board Hardware Description
Check des-docdb#### document.

ToDo: Find MCB schematics document number at docdb. Include figures of schematics.

2.1 Power Supplies
ToDoLaia: ReadModifyWrite

The MCB requires three power supplies. The majority of the logic is powered by a 3.3v
supply (+3.3VD). This supply can be either supplied from the backplane (P1) or generated
internally from U38. The jumper JP5 selects the source for this supply. Note that the ‘newer’
Systran FPDP CMC modules require only a 3.3V supply, however, these models overstress
the capabilities of the internal regulator and an external supply must be used. The internal
logic cell of the FPGAs requires 1.8v (+1.8V) that is generated on board by U39. U38 is
supplied from a 5v logic supply (+5VD) that must be present on the backplane through P1.
U39 is supplied from the 3.3V supply. The nominal current draws on these supplies are shown
in Table 10.

Table 10: Power Supply Current Draws
Supply Quiescent Peak

5v (with separate 3.3V supply) 0.6 Amp 1.7 Amp
3.3v (Including Slink power) 1.3 Amp 2.0 Amp

1.8v

2.2 Logic Section
2.2.1 Clock Generation

All logic on the MCB and the DHE backplane is synchronous to the master clock generated
by the MCB. If the MCB is mounted in a master DHE, then this 40MHz clock is generated by
QZ1. If the MCB is in a slave DHE, then the master clock is fed through the synchronization
interface at J3.
Selector U7 selects the clock source depending on master or slave use.
I476 provides a means to adjust the clock phase to enable close clock phase matching

between master and slave DHE chassis. The MCB internal clock is buffered by U13 and fed
to the FPGA through its global clock IO pin.
A backup clock from the oscillator QZ1 is bufered by IC10 and sent to another FPGA

clock IO pin. This will let us implement a recovery mode in case a board is set as slave and
it has no clock signal at connector J3.10

An external clock is fed out to slave DHE chassis through U7 and J4.
An analog of the DHE clock is available at the connector PX1 to provide a connection to

an oscilloscope for clock synchronization.
Board clocks to the peripheral boards mounted in the backplane are gated versions of the

internal clock generated within the Sequencer FPGA and controlled by the Clock Enable
register.
The system clock is also supplied to Slink module.

10This is not implemented yet. Future releases of the firmware may have it.

29

2.2 Logic Section 2 BOARD HARDWARE DESCRIPTION

2.2.2 Reset and FPGA Boot Logic

ToDo: Tell about jumper (ST3), monoestable, reprogram...

2.2.2.1 Jumper ST3 This jumper changes functionality of front panel push button. It has
three logical positions:

• Disconnected: When jumper is not placed, front panel push button is disabled.

• Connected to Voltage regulators: When push button is pressed it disables voltage
regulators. When released, firmware is reloaded into fpga.

• Connected to fpga: This is an asynchronous reset of the firmware. When front panel
push button is pressed it reloads default values to registers, state machines...

2.2.3 JTAG Interface

Pin Function
1 +3.3VD
2 DGND
3 KEY
4 TCLK
5 N.C.
6 TDO
7 TDI
8 TMS

Table 11: JTAG Pin Assignments

2.2.4 Options for Building the MCB

Firmware package is released as a bundle which contains among other things, sources and a
makefile.
This makefile can be tuned to change priorities (speed versus area) of synthesis.
Inside sources folder there is a file named constantsPkg.vhd. This file contains all defined

constants of the firmware (mostly register addresses). If needed, this make easier to change
default values or addresses (think it twice before changing a register address).

30

3 Board Specifications
ToDo: Update values

4 APPENDIX

4 Appendix
4.1 Appendix I - Board Identity and Firmware Revision Codes.
THE BOARD IDENTIFIER IS CODED AS A 16-BIT UNSIGNED INTEGER (I.E. CODES
0 TO 65535 ARE AVAILABLE).
WHEN READ AS AN ATTRIBUTE, THE INTEGER DECIMAL VALUE OF THE EN-

CODED VALUE SHOULD REPRESENT THE PRODUCT CODE OF THE PHYSICAL
HARDWARE.
CURRENT NOAO IMPLEMENTATIONS OF THIS CODE ARE RESERVEDAND SHOWN

BELOW:

• 100 = 36 CHANNEL IR ACQUISITION MOTHER BOARD REVISION A

• 200 = 18 CHANNEL IR ACQUISITION DAUGHTER BOARD REVISION A

• 300 = CLOCK AND BIAS BOARD REVISION A

• 400 = MASTER CONTROL BOARD REVISION A

• 500 = CCD ACQUISITION BOARD - PROTOTYPE

THE FIRMWARE REVISION IDENTIFIER CONTAINS A UNIQUE PATTERN TO IDEN-
TIFY THE FPGA CODE VERSION CURRENTLY LOADED ONTO THE HARDWARE.
CURRENT IMPLEMENTATION USES THE SAME 16-BIT UNSIGNED INTEGER COD-

ING SCHEME TO DESCRIBE A THREE DIGIT MAJOR + TWO DIGIT MINOR VER-
SION SET.
WHEN READ AS AN ATTRIBUTE, THE DECIMAL EQUIVELENT OF THE EN-

CODED VALUE SHOULD BE DIVIDED BY 100 TO SEPARATE THE MAJOR AND
MINOR REVISION NUMBERS.
TWO SPECIAL CASES ARE RESERVED FOR CODE DEVELOPMENT AND TEST-

ING.
VERSION 000.XX IS CONSIDERED UNDER DEVELOPMENT OR UNASSIGNED.
VERSION 9XX.XX IS CONSIDERED AS DEBUG CODE WHERE THE TWO RE-

MAINING MAJOR AND TWO MINOR CODES REPRESENT THE SOURCE VERSION
FOR THIS DEBUG CODE.
IT IS SUGGESTED THAT MAJOR CODES ARE RESERVED FOR CHANGES TO

FUNCTIONS AND PROTOCOLS THAT AFFECT THE INTEROPERABILITY OF BOARDS
WITHIN A DHE.
MINOR CODES ARE USED TO DIFFERENTIATE ON-BOARD FUNCTIONALITY

CHANGES THAT DO NOT AFFECT OTHER BOARDS WITHIN A DHE.

4.2 Appendix II - Using the MONSOON SYNC Function
ToDo: Update to new MCB

4.2.1 Introduction

The use of the synchronized logic contained in the hardware / firmware of the MONSOON
image acquisition system allows multiple Detector Head Electronics (DHE) chassis to operate
in close proximity to each other. Multiple DHE systems are typically required for large focal
planes where the number of video channels exceeds the capabilities of a single DHE. Without
synchronization, each DHE will generate electrical fields that can potentially interfere with
an adjacent DHE chassis leading to an increase in system noise.
To obtain synchronization two criteria must be met:

33

4.2 Appendix II - Using the MONSOON SYNC Function 4 APPENDIX

• Each DHE needs to have an internal system clock signal that is locked in phased to a
master clock.

• Any activity that is sensitive to induced noise, such as reading out of a detector, must
be ‘lock stepped’ to ensure that interference sources are seen as common mode noise
sources by all DHE chassis.

4.2.2 MONSOON Implementation

The requirements for synchronous operation are met in MONSOON by the software config-
uration of several PAN attributes, two front panel connectors on the Master Control Board
(MCB), and the use of a synchronization bit in the sequencer code running on the MCB.
The software attributes control the designation of each DHE as a master or slave and

establish an appropriate delay that allows each DHE enough time to have received the ‘Start
Exposure’ command from its local PAN. In addition, software attributes control the system
clock phase control (by way of U19) to align the different DHE clock phases. These attributes
are described further in Table 1.
The connectors are designated as “Sync In” (J9) and “Sync Out” (J18). The normal

topology for the Master / Slave cabling is a daisy chain where a cable is plugged into the
designated Master DHE ‘Sync Out’ connector and the first Slave DHE ‘Sync In’ connector.
Successive Slave DHE chassis are then linked in the same way. Figure 1 shows this scheme.
The requirement for the synchronization signals is that the combined delay associated to the
cable length and line receivers / transmitters will not exceed 50ns total. If this condition is
not met by the simple passive daisy chain topology, a ‘Star’ topology can be implemented
using a powered repeater.
Routing of the hardware signals in each MCB is achieved through jumpers JP2, JP3, and

JP11. Table 2 describes the appropriate jumper positions for each mode. Figure 2 shows a
schematic of the signal routing on the MCB.
There is a dedicated bit in the testable Sequencer control register that acts as the synchro-

nization flag for sequencer code running the readout and other sequencer programs. This bit
(bit 1 of the SEQ_CMDS register at MCB address 0x0102) is controllable through the EFR
register of the sequencer when the mode is set Master. Delaying sequencer program flow until
this bit changes state allows both the master and slave DHE sequencers to initiate a program
in ‘lock step’ with all other DHEs. Paragraph 4.2.4 details the basic mechanism of this.

4.2.3 Sample Assembler Code for Synchronized DHE Function

**
** PROJECT : MONSOON ENGINEERING
** TITLE : EXEC PORTION OF TEST ALADDIN CODE MODIFIED TO ACHIEVE SYNCRONIZATION BETWEEN
** : TWO OR MORE DHE MODULES.
** VERSION : 002
** DATE : 08/30/2006
** AUTHOR : PETER MOORE
** HISTORY : 12/09/2003 PCM ORIGINAL VERSION SCULPTED FROM EXEC ON ALADDIN.
** : 08/30/2006 PCM ADOPTED CODE TO REFLECT CCD USE OF ASM4. UPDATED JUMPER
** : DESIGNATIONS FOR MCB REVISION A HARDWARE.
**
** DESCRIPTION :
** : DUMMY SEQUENCER EXEC PORTION TO EXERCISE AND DEMONSTRATE THE SYNC
** : FUNCTIONALITY.
** :
** : NORMAL READOUT CODE IS REPLACED BY A DUMMY STUB THAT JUST RETURNS.
** : FOR ACTUAL USE YOU WOULD INSERT YOUR CODE AT THE STUBS
** :
** : TO USE THIS CODE THE MASTER AND SLAVE DHES NEED TO BE LINKED WITH THE SYNC
** : CABLE. MASTER SYNC OUT => SLAVE SYNC IN. THE SLAVE DHE SHOULD BE SET TO
** : USE THE EXTERNAL CLOCK (JP3 2=>3) AND ADJUSTED IN PHASE (VIA THE MCB_CLKINCTL
** : AND MCB_CLKOUTCTL FUNCTIONS) TO BE COINCIDENT WITH THE MASTER SYSTEM CLOCK.
** : THE SYNC CABLE CONNECTING THE MASTER AND SLAVE DHES MUST HAVE LESS THAN
** : 45ns OF DELAY IN ITS ENTIRE LENGTH (approximately 7 meters physical length).
** :
** : JP2 NEEDS TO BE JUMPERED FOR EXTERNAL SYNC IN THE SLAVE DHE AND REMOVED
** : IN THE MASTER DHE.
** :
** : THE PAN SETS THE MASTER AND SLAVE MODE IN THE RELEVENT DHES VIA

34

4 APPENDIX 4.2 Appendix II - Using the MONSOON SYNC Function

** : THE MCB CONTROL REGISTER BIT 15. BIT SET INDICATES MASTER MODE.
** :
** : THE PAN THEN ISSUES A NORMAL "START␣EXPOSURE" COMMAND WITH A VECTOR (1 IN THIS
** : EXAMPLE). ALL SEQUENCERS JUMP OUT OF THEIR IDLE MODE AND AWAIT THE ARRIVAL OF SYNC.
** : SYNC IS DELAYED BY A FIRMWARE DELAY GENERATOR BY A VALUE THAT EXCEEDS THE
** : ESTIMATED MAXIMUM LATENCY OF THE START EXPOSURE COMMAND REACHING EACH
** : INDIVIDUAL PAN NODE. THE SYNC IS EMMITED BY THE MASTER TO ALL SLAVES AFTER THE
** : DELAY. THE MASTER RECEIVES ITS OWN SYNC SIGNAL IN THE SAME FASHION (AND AT THE SAME
** : TIME) AS THE SLAVES. WHEN SYNC IS RECEIVED AND RECOGNIZED BY THE SEQUENCER BRANCH
** : INSTRUCTION , ALL SEQUENCERS RUN THE SAME CODE ON THE SAME CLOCK EDGE.
** :
**
** RESOURCES :
**
**
** JUMP FLAG DEFINITIONS - BIT POSITION IN COMMAND REGISTER **
**
DEF #SYNC 1 * Jump on sync bit high
DEF #ITC 2 * Jump on Integration time expired
DEF #START 3 * Jump on start exposure flag set
DEF #CCDREADOUT 4 * STRVCTR = 1: DO COMPLETE CCD CLEAR - INTEGRATE - READ
DEF #CCDCLEAR 5 * STRVCTR = 2: DO CCD CLEAR ONLY
DEF #CCDREAD 6 * STRVCTR = 4: DO CCD READ ONLY
DEF #VCTR_4 7 * STRVCTR = 8:
DEF #VCTR_5 8 * STRVCTR = 16:
DEF #VCTR_6 9 * STRVCTR = 32:
DEF #VCTR_7 10 * STRVCTR = 64:
DEF #VCTR_8 11 * STRVCTR =128:
DEF #CONT_RUN 12 * USER BIT 1: LOOP INDEFINATELY ON TESTS
DEF #USR_2 13 * Jump on user mode bit value 2
DEF #USR_3 14 * Jump on user mode bit value 4
DEF #CONT_CLR 15 * Jump on user mode bit value 8
**

** EFR REGISTER CONSTANTS **

DEF #KILL_EXPFLG x00000001 * Cancel start exposure flag using the EFR register
DEF #STRT_INTCNTR x00000002 * Start the integration time counter using the EFR register
DEF #STOP_INTCNTR x00000004 * Stop the integration time counter using the EFR register
DEF #LSR_AUTO_KILL x00000100 * Enables automatic board select cancel after an LSR instruction
DEF #LSR_MAN_RESET x00000200 * Disables automatic board select cancel. LSR will remain active
*until an LSR #DSLCT is issued
DEF #SET_SYNC_LOW x00004000 * If enabled as master DHE , set sync bit low after sync delay
DEF #SET_SYNC_HIGH x00008000 * If enabled as master DHE , set sync signal high immediately
DEF #KILLANDSYNC x00004001 * Set sync low and kill start exposure flag
**

** MODE REGISTER CONSTANTS **

DEF #RESET 0 * Mode register constant for board reset operation
DEF #READ 1 * Mode register constant for read operation
DEF #WRITE16 2 * Mode register constant for 16 bit write operation
DEF #WRITE32 3 * Mode register constant for 32 bit write operation
**

** LSR BOARD SELECT ASSIGNMENTS **

DEF #DSLCT 0
DEF #MCB 1

** PATTERN MEMORY DEFINITIONS **

** PATTERN MEMORY SEGMENTATION MAP
DEF #PATSEG_00 x0000 * Pattern memory origin - Initialization stuff
**
** ADDITIONAL DEFINITIONS USUALLY GO HERE
**
**

** INSTANTIATE PATTERN MEMORY VALUES **

ORG PAT #PATSEG_00 * ********* GENERAL CONSTANTS KEPT IN PAT MEM *********
PAT #KILL_EXPFLG #KILL_EXPFLG * We can use the same label name here because
*they are in different contexts
PAT #STRT_INTCNTR #STRT_INTCNTR * The definition earlier points to a data value. The
PAT #STOP_INTCNTR #STOP_INTCNTR * label here points to a pattern memory address
PAT #SET_SYNC_LOW #SET_SYNC_LOW * CODE VALUE TO WRITE TO EFR TO SET SYNC PIN LOW
PAT #SET_SYNC_HIGH #SET_SYNC_HIGH * CODE VALUE TO WRITE TO EFR TO SET SYNC PIN HIGH

* PROGRAM CODE SEGMENT STARTS HERE **

** EXECUTIVE ROUTINE
#INIT CAL #INIT * SET DETECTOR UP FOR INITIAL CONDITIONS
LMR #WRITE32
LPP #SET_SYNC_HIGH
LSR #MCB * SET SYNC BIT HIGH AS INITIAL CONDITION
#EXEC JCB #GOBABY #START * IF START EXPOSURE FLAG SET
JMP #EXEC * ELSE JUMP BACK TO EXEC
#GOBABY LPP #KILL_EXPFLG * KILL THE START EXP FLAG PATTERN = 0x00000001
LSR #MCB * WRITE TO THE EFR
LPP #SET_SYNC_LOW
LSR #MCB * TRIGGER THE SYNC SIGNAL. NOTHING HAPPENS HERE

* UNTIL THE DELAY HAS EXPIRED.

#WAIT JCB #WAIT #SYNC * SYNC GOES FALSE SYNCHRONOUSLY ON ALL DHES AFTER DELAY
LPP #SET_SYNC_HIGH
LSR #MCB * RESET SYNC BIT HIGH
JCB #JRDOUT #CCDREADOUT * DO CLEAR - INTEGRATE - READOUT OPERATION
JCB #JCLEAR #CCDCLEAR * DO CLEAR ONLY

35

4.2 Appendix II - Using the MONSOON SYNC Function 4 APPENDIX

JCB #JREAD #CCDREAD * DO READ ONLY
JMP #EXEC * NO FLAGS SET , GO HOME.
#JRDOUT CAL #CLEAR
LPP #STRT_INTCNTR
LSR #MCB * START INTEGRATION TIMER RUNNING
NOP * A bug in the MPU .. needs time to reset the flag
NOP
#RD1 JCB #RD2 #ITC * WAIT FOR INTEGRATION TIME
JMP #RD1
#RD2 LPP #STOP_INTCNTR
LSR #MCB * STOP INTEGRATION TIMER
CAL #ARRAY_READ
JCB #JRDOUT #CONT_RUN * DO IT ALL AGAIN IF TOLD TO DO SO
JMP #EXEC * CALL IT A DAY
#JCLEAR CAL #CLEAR
JMP #EXEC
#JREAD CAL #READ
JMP #EXEC

Listing 1: Sample assembler file

36

4 APPENDIX 4.3 Appendix III – Master Control Board Sequencer MPU Description

4.3 Appendix III – Master Control Board Sequencer MPU Description

ToDo: Update to new MCB. Performance, interface, architecture and register is the same
but it changes small details (like which fpga we’ve used or the implementation of the
memories.

4.3.1 Introduction

The sequencer for the Master Control Board (MCB) is implemented as a completely imbed-
ded 4-bit (16 instructions) micro-controller. A micro-code program loaded into the sequencer
program memory controls the logic flow of the sequence. A fixed instruction decode and exe-
cution cycle is of great value, particularly for timing critical waveform generation. Therefore,
the sequencer is designed with a uniform one-clock-cycle execution time for all 16 instructions.
The assembly micro-code for the sequencer can be easily customized to change functionality
and adjust the required timing.

4.3.2 Sequencer Performance

The current sequencer design implementation performs satisfactorily at 20 MIPS on the
Virtex XCV 300 PQ 240 and meets all worst-case timing requirements including clock skew
analysis with a positive slack of more than 1 ns. The current performance of 20 MIPS is
very modest but meets the objective of single-clock-cycle execution without any branching
latency penalties. It should be noted that the sequencer currently operates at the maximum
frequency of 20 MHz = ½ system clock frequency of 40 MHz.

4.3.3 Sequencer Interface

The sequencer interface symbol is shown in Figure 1. The sequencer derives its clock internally
from the sysclk. Only the decode execution unit of the sequencer operates on a seqclk derived
from the global system clock sysclk. All internal registers and memory elements except for
the stacks are accessible through a common data write port and individual read port which is
multiplexed external to the sequencer. The address decode of all components of the sequencer
is also implemented external to the sequencer and individual input write strobes are asserted
when the corresponding components are addressed for writes. The data in all sequencer
registers based on Select-RAM is always available for read during the same clock cycle in
which they are addressed. However, the Block RAM-based program memory and pattern
memory elements incur one-clock-cycle latency before the data corresponding to their address
is available on their output ports. The sequencer accesses the Sequencer Bus by asserting
a bus request signal and waiting for an acknowledge signal. This wait blocks the sequencer
execution and is critical for timing sensitive delay instructions. However, if the acknowledge
signal is asserted before the next sequencer rising edge, no additional delay is incurred.

37

4.3 Appendix III – Master Control Board Sequencer MPU Description 4 APPENDIX

Figure 7: Sequencer Interface Symbol

4.3.4 Architecture Overview

The sequencer is based on Harvard architecture with separate program memory and pattern
memory implemented using the Block RAM resources. Apart from the conventional branching
instructions, dedicated looping instructions are also included in the sequencer instruction set,
therefore the sequencer also includes an address stack, loop address stack and loop count stack
memories to support the nested looping and branching functionality. Five types of special
function registers, Enable, Command, Loop Count, Integration and Control, are also included
for their specific functions. A central Decode Execution Unit (DEU) processes the sequencer
micro-code to implement the programmed control flow and timing. A clock control unit,
which includes a sequencer clock divider and clock buffer, is included for programmable clock
cycle and low skew operations. The detailed functionality and implementation of each of
these sequencer components is described later in this section.

Figure 8: Sequencer Components

38

4 APPENDIX 4.3 Appendix III – Master Control Board Sequencer MPU Description

4.3.5 Program Memory (BRAM)

The program memory is implemented using the Block RAM resources. The program memory
is dual port, 16 bits wide and 1K (1024 words deep, read-write RAM). Both ports are clocked
with the same system clock (SYSCLK 40 MHZ). Conventional pipeline-based architecture
results in pipeline refill latencies while executing branching instructions that are unacceptable
for single clock execution. To avoid such latencies, one port of the program memory is
dedicated to substitute for pipelining operation. This is achieved by performing a Program
counter + 1 read at the second port of the program memory. Access to this port is limited to
the DEU only. Access to the other port of the program memory is time multiplexed between
the PAN and the sequencer DEU, where the PAN is given the higher priority. The result is
that the DEU’s access to program memory is suspended when the PAN is reading or writing
to the sequencer memory. This inserts a blocking delay in sequencer execution so the timing
information encoded into the sequencer micro-code gets altered. Because of this, program
memory read and writes should be avoided during timing-critical normal mode of sequencer
operation.

4.3.6 Pattern Memory (BRAM)

The pattern memory is dual port 32K bits of read-write RAM. The two ports of pattern
memory include independent read-write PAN port and read only DEU port but differing
in width and depth. From the PAN port the program memory is 16 bits wide and 2K
words deep whereas from the DEU port it is 32 bits wide and 1K patterns deep. The even
and odd addressed 16-bit words correspond to the least and most significant 16 bits of a
pattern respectively. The dual port access to the pattern memory is not time multiplexed so
both PAN and DEU can randomly access the program memory independently. The pattern
memory is clocked using the same system clock (SYSCLK 40 MHZ). The pattern memory
is implemented using the Block RAM resources. It should be noted that patterns in the
program memory are not cleared on reset and require explicit writes (with 0 data) from the
PAN to clear the contents of the Pattern Memory.

4.3.7 Stack RAMs (Select-RAM)

Program Address Stack RAM and Loop begin address Stack RAM provides 12 bits wide and
64 words deep buffer spaces each to implement the Program Pointer Stack and Loop Begin
Address Stack respectively, whereas the loop count Stack RAM is 16 bit wide and also 64
words deep. The Program Address is pushed into the Program Address Stack RAM whenever
a sub-routine is called and is popped back at the end of sub-routine execution. Similarly,
to support the nested looping instructions at the beginning of the loop, the next program
memory address and previous contents of the loop counter are pushed into their respective
stacks, whereas the loop counter is loaded with the new count value. After execution of
iteration, if the loop counter is greater than zero, it is decremented and program pointer
is re-loaded with the loop beginning address stored at the top of the stack. Otherwise the
program pointer is incremented to point to the next instruction and loop count and loop
starting address are both popped out from the sequencer stack. All three Stack RAMs are
clocked from the system clock (SYSCLK 40 MHZ). The Stack RAMs are not transparent to
the PAN and are controlled by the DEU only. Stack RAMs are implemented using Distributed
Select RAM resources.

4.3.8 Special Function Registers

As mentioned earlier, the current implementation of the sequencer includes the following five
different types of special function registers:

39

4.3 Appendix III – Master Control Board Sequencer MPU Description 4 APPENDIX

• Command Register

• Control Register

• Loop Count Register

• Clock Control

• Decode Execution Unit

4.3.8.1 Command Register Definition This register is a combination of hardwired and
software settable flags. The intended purpose is to provide a conditional jump capability
within the sequencer micro code by using the sequencer instruction “Jump if Control Bit
Set” (JCB). This instruction allows any of the 16 flags to be tested for an active condition.

4.3.8.2 Bit 0: Unconditional Jump Always tied to ’1’ to facilitate the implementation of
unconditional jump.
Default 1 Active 1.

4.3.8.3 Bit 1: SYNC_IN This bit reflects the condition of the EXT_SYNC signal when
MCB jumper JP17 is correctly configured for slave mode. In Master mode this bit reflects the
status of the SYNC_OUT RS flip flop controlled by the Enable Function Register (EFR).
Default 0 Active 1.

4.3.8.4 Bit 2: Integration Timer Terminal Count This bit is set when the Integration
Time counter (ITC) reaches the value stored in the Required Integration Time (RIT) register
(at MCB address 0x0000). The flag will remain set until either the RIT register is loaded
with a larger value than the ITC contents or asserting the enable bit via the EFR activates
the integration timer. Default condition (after reset) is active since the ITC and the RIT
are reset to zero. If this bit is to be used to determine if the integration timer is active, the
PAUSE bit in the control register should also be checked.
Default 1 Active 1.

4.3.8.5 Bit 3: Start Exposure Active High This bit is set when the DHE receives a “Start
Exposure” command from the PAN. It remains set until a reset start exposure flag bit is set
via the EFR. The purpose of this bit is to act as a qualifier for bits 4 to 11 of this register.
Default 0 Active 1.

4.3.8.6 Bit 4 to Bit 11: Start Exposure vector These bits are latched from the address
portion of the start exposure command at the same time as bit 3. They are meant to enable
a variety of sequence actions to be selected based upon the bits set and the use of the JCB
instruction in the sequencer micro code.
Default 0 Active 1.

4.3.8.7 Bit 12 to Bit 15: User Defined Bit Pattern These bits are written directly to
the command register from the PAN by writing to the register address. They are transposed
from bits 0 to 3 in the data written to the register.
Default 0 Active 1.

4.3.9 Control Register Definition

This register controls the general behavior of the Master Control Board. The principal
functions are listed below.

40

4 APPENDIX 4.3 Appendix III – Master Control Board Sequencer MPU Description

4.3.9.1 Bit 0: MPU Run: Asserted by writing to the MCB at address 0xFFFC. Asserting
this bit allows the sequencer to begin decoding and executing micro code. Whenever the signal
is de-asserted, the MPU enters into the Hold State after executing the current instruction.
All the board selects and the request signal are masked during the non-active hold state. The
program counter is reset to zero.
Default 0 Active 1.

4.3.9.2 Bit 1: PAUSE ITC: Setting this bit to 1 will stop the Integration Time Counter
(ITC) from incrementing. Resetting this bit will allow the ITC to continue counting up.
Default 0 Active 1.

4.3.9.3 Bit 3 & bit 2: Sequencer Clock Pre-Scalar This 2-bit pattern defines the base
sequencer clock frequency. Note that the current maximum frequency is half the system clock
frequency. Each micro code instruction takes one sequencer clock cycle to complete.

• 00 SYSCLK / 1 20 MHz

• 01 SYSCLK / 2 10 MHz

• 10 SYSCLK / 4 5 MHz

• 11 SYSCLK / 8 2.5 MHz

Default 00.

4.3.9.4 Bits 4-14: Currently Not Used

4.3.9.5 Bits 15: Slave DHE When set this bit disables the output of the SYNC_OUT
signal and enables the reception of SYNC_IN signals to the CMD register. When this bit
is not set the SYNC bit in the CMD register reflects the state of the SYNC RS Flip Flop
controlled through the EFR.
Default 0 Active 1.

4.3.10 Loop Count Registers

There are 16 Loop Counters. These 16-bit registers can be loaded directly from the PAN and
are intended for use where repetitive cycles of clock sequences are needed. The sequencer
instruction “Loop Register Begin” (LRB) identifies the first instruction to be repeated and
one of the 16 loop registers. The “Loop End” (LPE) instruction identifies the end of the
repeated block of micro code and will repeat the sequence until the count stored in the loop
register has been completed.

4.3.10.1 Enable Function Register (EFR) The EFR is accessible only through the micro
code. This register controls strobes that are set and reset by executing a “Load Select
Register” (LSR) instruction with the bit 0 set in the operand and the MODE Register set
to a 32-bit write code, that is, writing to the MCB board itself with a WRT32 mode. The
contents of the current pattern pointer are written to this register with the following effects:

Table 12: Enable Function Register
Bit Function Bit Function
31 15 Set SYNC_OUT signal high.

41

4.3 Appendix III – Master Control Board Sequencer MPU Description 4 APPENDIX

Bit Function Bit Function
30 14 Set SYNC_OUT signal low
29 13
28 12
27 11
26 10
25 9 Set LSR Auto-cancel feature off
24 8 Set LSR Auto-cancel feature on
23 7
22 6
21 5
20 4
19 3
18 2 Stop Integration Time Counter
17 1 Start Integration Time Counter
16 0 Reset Start Exposure Flag

4.3.10.2 Integration Time Register and Control The Required Integration Time Register
is 32 bits wide and thus can be programmed by PAN with integration time of minimum
of 1 millisecond up to a maximum of approximately 50 days. The integration period delay
is implemented using an internal up counter. When the start bit of the Enable Function
Register is asserted, the internal counter is reset to zero and it starts counting up every
millisecond until a terminal count equal to the value loaded into the RIT register is exceeded.
The TC flag in the command register is negated (0) until the ITC is less than RIT value.
The ITC is paused by the pause ITC bit in the control register is asserted.

4.3.11 Clock Control

The sequencer clock is programmable by configuring the control register appropriately. Refer
to the description of the Control Register. Thus for debugging purposes the sequencer can
by slowed by a factor of 2, 4 or 8. However, the Virtex FPGA doesn’t provide BUFGMUX
modules to multiplex multiple clocks. To minimize the clock skew across combinational logic,
the sequencer clock divider and multiplexer are implanted by using the clock enable based
implementation. To route the sequencer clock on high speed fast global resources of the
FPGA, the output of the clock divider is buffered through on-chip clock buffers. Note that
the delays implemented are currently with respect to the fastest sequencer clock frequency of
20 MHz so if the sequencer clock is divided by a factor, all delays specified will get multiplied
by the same factor.

4.3.12 Decode Execution Unit (DEU)

The decode execution unit is the central control logic of the sequencer. Based on the function-
ality performed by various instructions, the control logic internal to the Decode execution unit
is grouped into various control and data path elements, which collectively perform various
functions as briefly explained in sequel.

4.3.12.1 Program Address Multiplexer As mentioned earlier, the DEU’s access to the
program memory Multiplexed Port is time-shared with the PAN Local address. The Program
Address Multiplexer implements this priority multiplexed port.

42

4 APPENDIX 4.3 Appendix III – Master Control Board Sequencer MPU Description

4.3.12.2 Program Counter Control Logic Increments the program counter by the size of
the instruction (nibble) executed while performing sequential (non-branching) instructions.
For branching and sub routine call instructions the counter is loaded with the address specified
by the operands. While executing subroutine return and looping instructions, the program
counter is loaded with address on the top of the program pointer address stack and loop
begin address stack respectively. Apart from this program counter output, another output
equal to “Program Counter + 1” is also provided to address the program memory Pipeline
Port.

4.3.12.3 Instruction Multiplexer The current instruction set implementation supports a
variable instruction size from 1 to a maximum of 5 nibbles or 20 bits. So the maximum
size instruction consists of 1 nibble opcode and 4 nibbles operand. The 32-bit data read per
clock cycle from the two ports of the Program memory includes 16 bit data at the current
memory location addressed by the program counter and the next 16 bits located at the next
memory location. The opcode can be the first, second, third or fourth significant nibble of
the 16-bit multiplexed port program word if the value of the least significant 2-bits of the
program counter is b’00, b’01, b’10 or b’11 respectively. The operand for the maximum size
instruction is the following 4 nibbles. Therefore, from the 32 bits program memory data, the
Instruction Multiplexer selects the 20 bits valid instruction based on the least significant 2
bits of the program counter at the beginning of every execution cycle.

4.3.12.4 Pattern Pointer Control Logic Logic initializes the pattern pointer to 0 when
Reset is asserted. Decodes and executes LPP, IPP and DPP instructions when the sequencer
run flag is asserted.

4.3.12.5 Output Registers and Control Logic Apart from the pattern pointer sequencer
include three other static registers, namely Select Register, Device Address Register and
Output Register to control the sequencer bus. The control logic decodes and executes the
LSR, LMR and LDA instructions to load the operand data into Select registers, Mode register
and Device Address register on respective execution.

4.3.12.6 Program Counter Stack Control Logic Decodes sub-routine Call and Return
instruction and performs Stack Memory push (write) and pop (read) operations respectively.

4.3.12.7 Loop Control Logic Controls the Loop Counter and selects the addressed Loop
Register from the bank of 16 loop registers using an internal Loop register Multiplexer while
executing looping instructions. Also controls the push and pop operations on Loop Count
Stack and Loop Begin Address Stack for implementing nested loop functionality.

4.3.12.8 EFR Write Decode Asserts a write to the enables register when local select bit
in the select register is asserted and the pattern of the mode register bits correspond to the
write mode.

4.3.12.9 Delay Control Logic Three delay counters, clock-counter, microsecond counter
and millisecond counter are designed to insert the explicitly specified blocking timing delays
apart from the non-blocking integration time controller. The delay control logic decodes the
delay instruction and loads the corresponding resolution down counter with specified value
in the operands. Once the counters are loaded, they start decrementing to implement the
specified delay and block the sequencer from executing the next instruction until all counters
are reduced to inactive zero state. On reset, all three counters are initialized to zero value.

43

4.3 Appendix III – Master Control Board Sequencer MPU Description 4 APPENDIX

Figure 9: Decode Execution Unit

4.3.13 Instruction Set for the Sequencer

Instead of controlling the 32 sequencer signals (max) on the Sequencer address and data bus
individually, the Sequencer Data Bus is grouped and is controlled as a 32-bits wide binary
vector including the address and data bus. All the 32-sequencer signals are controlled simul-
taneously by changing the 32-bit word, defined as a Pattern, instead of switching one signal
individually. Any arbitrary desired waveform can be expressed as a sequence of pattern with
appropriate delay for each pattern. The output of the Sequencer can be divided into such
elementary control-waveforms as Row-Shift Column-Shift Waveform. The Sequencer archi-
tecture includes a 32-bit wide and 1K deep memory called the Pattern Memory implemented
using FPGA Block RAM. All valid 32-bit patterns required for generating the desired wave-
forms are loaded into the Pattern Memory and are accessed by Pattern Memory address. By
sequentially changing the address of the Pattern Memory after the required amount of delays
desired, waveform can be generated on the Sequencer Address Data-Bus.
One can observe that for any defined waveform, the Pattern Memory access will be generally

sequential except for some exceptions. The Sequencer CPU indirectly addresses the Pattern
Memory by a Pattern Pointer (similar to the Data Pointer in 8051). All instructions have
a unique binary Opcode 1-nibble wide and 0-4 nibble wide operand based on the function
executed by the instruction. Thus an instruction set of maximum 16 instructions with the
longest instruction being 5 nibble or 20 bits wide and the shortest instruction being 1 nibble
or 4 bits wide. However, all instructions will be executed in a single SEQCLK Based on the
requirements and functionality executed, the instructions are classified as:

1. Output Instructions

2. Control Instructions

3. Delay Instructions

44

4 APPENDIX 4.3 Appendix III – Master Control Board Sequencer MPU Description

4.3.14 Output Instructions

Six different instructions are included to control all the output signals to the back-plane
Sequence Bus. The first 3 instructions are designed to mange the pattern pointer efficiently
with goals to optimize the program size and at the same time provide enough flexibility to
the programmer to control the complete Sequence Bus. The next 4 instructions provide the
programmer with necessary instructions to control the Sequence-Mode bits, Device Address
bits and Board Select signals.

4.3.14.1 LPP: Load Pattern Pointer: 4 Nibble (16 bit) This instruction loads the Pattern
Pointer of the Sequencer CPU with the immediate 10-bit address specified by the next three
nibbles in the program memory. Note that since the address space of the Pattern Memory
for the current design is limited to 1K, the most significant 2 bits of Nib1 are don’t care and
the other two bits specify the most significant bits of the pattern address PA9 PA0.

LPP: “Pattern Address”
Nib 00 Nib 01 Nib 02 Nib 03
0001b XX 10-bit Pattern Address. PA9-PA0

4.3.14.2 IPP: Increment Pattern Pointer: 1 Nibble (4-bit) On execution, the Pattern
Pointer is incremented by one. It is useful when waveform is running through a sequence of
consecutive patterns in ascending order.

IPP:
Nib 00
0010b

4.3.14.3 DPP: Decrement Pattern Pointer: 1 Nibble (4-bit) Decrements the Pattern
Pointer by one and is useful when waveform is running through a sequence of consecutive
patterns in descending order.

DPP:
Nib 00
0011b

4.3.14.4 LDA: Load Device Address (12-bit) It loads the 5-bit Sequence Device Address
Register, which is the output register for the DEV_ADDR [4:0] signals and the D3, D2 &
D1 bits of the first nibble are don’t care.

LDA: “Device Address”
Nib 00 Nib 01 Nib 02
0100b XXX Dev_Addr(4-0)

4.3.14.5 LMR: Load Mode Register 3 Nibble (12-bit) It loads the 2-bit Sequence Mode
register, which is the output register for the SEQ_MODE [1:0] signals and the D3 & D2 bits
of the first nibble are don’t care.

LMR: “Mode Value”
Nib 00 Nib 01
0101b x x SQM1 SQM0

45

4.3 Appendix III – Master Control Board Sequencer MPU Description 4 APPENDIX

4.3.14.6 LSR: Load Select Register 3 Nibble (12-bit) It loads the 8-bit board Select
Register, which is the output register for the board select signals Sel#8:1. Note that the
least significant select SEL1 is a sequencer internal select signal.

LSR: “Select Value”
Nib 00 Nib 01 Nib 02
0110b X Sel(6-0)

4.3.15 Control Instructions

4.3.15.1 CAL: Call Subroutine: 4 Nibble (16 bit) This is the classic CALL instruction
similar to 8085; the address pointing to the sub-routine is an operand, which for the current
implementation is (12-bit). The next address is pushed to the address stack and control is
transferred to the specified address.

CAL: “Subroutine Address”
Nib 00 Nib 01 Nib 02 Nib 03
1000b 12-bit Subroutine Address. A(11-0)

4.3.15.2 RET: Return 1 Nibble (4-bit) This is the classic RETURN instruction similar
to 8085; all sub-routines called must end with a return instruction. On execution of RET,
return address is popped from the top of the stack and control is transferred to that address.

RET:
Nib 00
1001b

4.3.15.3 JCB: Jump if Control Bit Set. 5 Nibble (20-bit) For conditional branching, a
conditional jump instruction is provided.
Unlike all other instructions, the JCB includes two types of operands and control is trans-

ferred to the specified address if the corresponding control register (16-bit wide) flag is set.

JCB: “Bit Number”; “Address”
Nib 00 Nib 01 Nib 02 Nib 03 Nib 04
1010b BN(3-0) 12-bit Address. A(11-0)

4.3.15.4 LRB: Loop Begin 2 Nibble (8-bit) The next program counter address and the
loop counter value pointed to by the loop register index in nibble 01 are pushed onto their
respective stacks. The stack implementation permits the use of nested loops of degree equiv-
alent to stack depth.

LRB: “Index”
Nib 00 Nib 01
1010b 4-bit loop register index 0:15

4.3.15.5 LPB: Loop Begin 1 Nibble (4-bit) The next program counter address and the
value of the pattern memory location pointed to by the pattern pointer are pushed onto
their respective stacks. The stack implementation permits the use of nested loops of degree
equivalent to stack depth.

LPB:
Nib 00
1011b

46

4 APPENDIX 4.3 Appendix III – Master Control Board Sequencer MPU Description

4.3.15.6 LPE: Loop End 1 Nibble (4-bit) The loop count on the top of the stack, if not
zero, is decremented and address stored on the top of the program counter address stack is
loaded into the address pointer. If the loop count is zero, the count and program counter
address are popped off the stack and program counter address is incremented.

LPE:
Nib 00
1100b

4.3.16 Delay Instructions

With a combination of the following instructions, any arbitrary delay (less than a second)
can be implemented. A corresponding down counter is loaded with the count specified by
the operand. The delay values for every instruction are currently limited to 255*least count.
This is based on the assumption that most frequently required delays will be within this
range. However, if the delay values required are in the complete range of 0-999 *Least count,
either the size of the operand or the least count can be scaled to provide the complete range
accordingly.

4.3.16.1 DMS: Delay Milliseconds 3 Nibble (12-bit) A delay with resolution (least count)
of a millisecond and of magnitude equivalent to the value specified by the operand “Delay
mili seconds count” (8-bit) is inserted. None of the output registers are altered while this
instruction is executed. The program counter is halted until the delay counter is reset.

DMS: “ms count”
Nib 00 Nib 01 Nib 02
1101b DmsC(7-0)

4.3.16.2 DuS: Delay Microseconds 3 Nibble (12-bit) A delay with resolution of a mi-
crosecond and of magnitude equivalent to counter value specified by the DusC Delay micro
seconds count (8-bit) is inserted. None of the output registers are altered when this instruc-
tion is executed. The program counter is halted until the delay counter is reset.

DUS: “us count”
Nib 00 Nib 01 Nib 02
1110b DusC(7-0)

4.3.16.3 DSC: Delay System Clock 3 Nibble (12-bit) A delay with resolution of SEQCLK
period and of magnitude equivalent to counter value specified by the DSCC Delay system
clock count (8-bit) is inserted. None of the output registers are altered when this instruction
is executed. The program counter is halted until the delay counter is reset.

DSC: “delay system clock count”
Nib 00 Nib 01 Nib 02
1111b DSCC(7-0)

4.3.16.4 NOP: No Operation 1 Nibble (4-bit) A delay with resolution of SYSCLK pe-
riod and of unit magnitude is inserted. None of the output registers are altered when this
instruction is executed.

NOP:
Nib 00
0000b

47

4.4 Appendix IV – Synthetic Pixel Generator 4 APPENDIX

4.4 Appendix IV – Synthetic Pixel Generator
Revision 4.63 of the Pixel FPGA firmware (McbPixFpgaV463.mcs) contains a comprehensive
pixel data generator that allows testing of the MONSOON data paths and software. The
data generator produces synthetic pixel data in an amount and cadence that represents data
produced by physical acquisition boards. This can be used to test and optimize the pixel
data path without having to use the intrument or detectors. Also, the data generator can
be programmed to inject synthetic data into an existing DHE data path to replace one or
ore disabled ormissing acquisition baords. The pixel generator suppoorts both visible and
infrared readout schemes. Synthetic pixel dta contains a channel number tag and an 8-bit
sythetic data field. The data field can be programmed as a sequential ramp or as pseudo
noise values. The generator is controlled by the attributes described in Table 19.

Address Function Name Function Description
0x02FC
(15:13)

SIM_MODE 3-bit field of the pixel control register.
Controls the pixel generator operational
mode.

0x02D0 SIM_PIXROWS Number of pixel rows to synthesize.
0x02D1 SIM_PIXCOLS Number of pixel columns to synthesize.
0x02D2 SIM_PIXTIME Period between pixel bursts
0x02D3 SIM_CHANNELS Number of pixels to generate each burst.
0x02D4 SIM_DELAY Time to delay before initial burst is

generated.
0x02D5 SIM_INTEGRATE Integration time for IR mode 2.
0x02D6 SIM_FOWLER Number of Fowler samples to take in IR

mode 2.
0x02D7 SIM_PIPE Pipeline priority time slots to generate in

mode 3.

Table 13: Pixel Generator Memory Map

4.4.1 Simulation Mode Register (SIM_MODE)

This is a 3-bit field in the pixel control register. The value in this register controls the moe
o the pixel generator. Table 20 shows the availabel mode values.

SIM_MODE Function
0 Pixel generator disabled. No synthetic data generated. (default value).
1 Generate pixels in visible mode. (emulate CCD) - sequential data.
2 Generate pixels in IR mode - sequential data.
3 Generate replacement pixels on time slot - sequential data.
4 Pixel generator disabled. No synthetic data generated.
5 Generate pixels in visible mode (CCD) - noise data.
6 Generate pixels in IR mode - noise data
7 Generate replacement pixels on time slot - noise data.

Table 14: Pixel Generator Mode Description

Generate pixels in visible mode – The pixel genrator will be triggered on the Start Exposure
command sent to the MCB. There will be (SIM_PIXROWS x SIM_PIXCOLS) bursts of data
separated by (SIM_PIXTIME x 100ns) time. For each burst, SIM_CHANNELS worth of
pixels will be genreated. The data will contain an 8-bit channel ID field (repeated each burst)

48

4 APPENDIX 4.4 Appendix IV – Synthetic Pixel Generator

and either an 8-bit incremental pixel value (SIM_MODE bit 2 = 0) or an 8-bit pseudo noise
value. There will be a dealy of (SIM_DELAY x 1ms) before the first burst of pixels is sent to
the PAN. Total number of pixels sent to the PAN will be (SIM_PIXROWS x SIM_PIXCOLS
x SIM_CHANNELS).

Generate pixels in IR mode – The pixel generator will be triggered on the Start Expo-
sure command sent to the MCB. There will be an initial delay of (SIM_ELAY x ims) be-
fore the data begins to arrive at the PAN. For the value of SIM_FOWLER, there will be
(SIM_PIXROWS x SIM_PIXCOLS) bursts of data separated by (SIM_PIXTIME x 100ns)
time sent to the PAN. Before each Fowler smaple, there will be a delay of (SIM_DELAY x
1ms). After the completion of these data frames, the integration timer will waitr (SIM_INTEGRATE
x 1ms) before starting the second readout. The second readout will follow exactly the
same process as pre-integration. Total number of pixels sent to the PAN will be (2 x
SIM_PIXROWS x SIM_PIXCOLS x SIM_CHANNELS x SIM_FOWLER). The data will
contain an 8-bit channel ID field (repeated each burst) and either an 8-bit incremental pixel
value (SIM_MODE bit 2 = 0) or an 8-bit pseudo noise value.

Generate replacement pixels on time slot – this mode value is used to inject synthetic pixel
data into the normal acquisition data stream generated by a set of MONSOON acquisition
boards. In this mode, the 8-bit SIM_PIPE attribute is set up to indicate into which sequence
time slots the data is to be placed. Table 21 shows the releveance of this register’s bit
positions.

Pipeline Priority Value Bit Position
0 Not available
1 Bit 1 – value 0b00000010
2 Bit 2 – value 0b00000100
3 Bit 3 – value 0b00001000
4 Bit 4 – value 0b00010000
5 Bit 5 – value 0b00100000
6 Bit 6 – value 0b01000000

Table 15: Pixel Generator Pipeline Priority Register

In this mode it is essential that the pipeline prioity time slot being emulated by the pixel
generator be preceded by either a real acquisition board pixel transfer time slot or a previous
pixel generator time slot. This is because the pixel generator uses the edges of the pipeline
prioity signal to “know” when the correct time slot is available so it can begin the data
transfer. Examples follow.
Example: Acquisition boards in DHE slots 3, 4, 5 and 6 – The acquisition board in slot

5 has been disabled)pipeline enable = 0). Pipeline priority values are programmed as 0,
2, 4 and 6 on the respective boards. Setting the SIM_PIPE register to 3 will produce the
reuqired result since the pixel generator data will be triggered at the end of the data transfer
from the acquisition board in slot 4 at pipeline priority time slot 2. Setting the SIM_PIPE
register to 4 will not produce data since there will be no end of transfer activity on priority
3 to trigger the pixel generator.
For simlar reasons pertaining to the above, it is not possible to command the pixel generator

to initiate pipeline transfers with a pipeline priority value of 0.
In this mode, for each pipeline priority bit set in the SIM_PIPE register, the number of

pixels gerneated will be equal to the value of SIM_CHANNELS.

49

4.4 Appendix IV – Synthetic Pixel Generator 4 APPENDIX

4.4.2 Simulation Pixel Rows Register (SIM_PIXROWS)

This is a 16-bit register that controls the number of synthetic pixel data that is generated.
The product of SIM_PIXROWS x SIM_PIX COLS is equal to the number of bursts that
will be generated for each data frame. This register is not used in simulation modes 3 or 7.

4.4.3 Simulation Pixel Columns Register (SIM_PIX COLS)

This is a 16-bit register that controls the number of synthetic pixel data that is generated.
The product of SIM_PIXROWS x SIM_PIX COLS is equal to the number of bursts that
will be generated for each data frame. This register is not used in simulation modes 3 or 7.

4.4.4 Simulation Pixel Time Register (SIM_PIXTIME)

This 8-bit register controls the time between pixel bursts in units of 100ns. For example, to
emulate a pixel data rate of 250Kpix/sec, set this register to a value of 40. This register is
not used in simulation modes 3 or 7.

4.4.5 Simulation Channels Register (SIM_CHANNELS)

This 8-bit register controls the number of synthetic pixels generated for each burst. For
example, to simulate four CCD acquisition boards, each with eight channels, set this register
to 32. This register is used in all active simulation modes.

4.4.6 Simulation Delay Register (SIM_DELAY)

This 8-bit register controls two dealys. In modes 1, 2, 5 and 6, it allows specifying an
initial delay from the arrival of the Start Exposure command to when the first pixel burst is
generated and sent to the PAN computer.This delay is specified in this register in lilliseconds.
In mode 2, the register also controls the timebetween Fowler sample data frames. This register
is not used in simulation modes 3 or 7.

4.4.7 Simulation Integration Register (SIM_INTEGRATE)

In mode 2 and 6 (IR mode), this 16-bit register sets the simulated integration time between
the pre-integration readout and post-integration readout data streams. Set this register to
the required integartion time in milliseconds. This register is not used in modes 1, 3, 5 or 7.

4.4.8 Simulation Fowler Register (SIM_FOWLER)

In simulation modes 2 and 6, this 8-bit register determines the number of data frames sent ot
the PAN in the pre-integration and post-integration simulation. Each data frame wil transmit
(SIM_PIXROWS x SIM_PIXCOLS x SIM_CHANNELS) pixels to the PAN. This register
is not used in modes 1, 3, 5 or 7.

4.4.9 Simulation Pipe Register (SIM_PIPE)

This 8-bit register is only used in modes 3 and 7. It specifies the pipeline prioity time slots
to be used by the pixel generator to send data to the PAN. The significance of this register
is hsown in Table 21.

50

4 APPENDIX 4.5 Appendix V – csv file for MCB

4.4.10 Limitations of the Pixel Generator

There are several combinatins of mode and operating configuration that cannot be simulated
by the pixel generator. These combinatins are listed by their respective SIM_MODE values.

• Modes 1 and 5 - SIM_CHANNEL = 1 and (SIM_PIXROWS x SIM_PIXCOLS) =
odd number.

• Modes 2 and 6 - SIM_CHANNEL = 1 and (SIM_PIXROWS x SIM_PIXCOLS) =
odd number.

• Modes 3 and 7 - SIM_CHANNEL = 1; Set the SIM_CHANNEL value to 2. It will
operate correctly.

4.4.11 Sample Configuration File Setup

The following ten lines indicate a usable configuration file structure to include in the PAN.cxv
file.

SimPipe,SIM_PIPE,0x00102D7,1,0x0E000000,SIMPLE,SIMPLE,FLOAT,UCHAR,1.0,0.0,LINEAR,0.0,128.0,Timeslot,PIPELINE
RPIORITY TIMESLOT MASK. I = GENERATE DATA, 0 = DONT GENERATE

SimIntegrate,SIM_INTEGRATE,0x00102D6,1,0x0E000000,SIMPLE,SIMPLE,FLOATUINT,1.0,0.0,LINEAR,0.0,65535.0,millisec,SIMULATED
INTEGRATION TIME IN MILLISECONDS

SimDelay,SIM_DELAY,0x00102D4,1,0x0E000000,SIMPLE,SIMPLE,FLOAT,UCHAR,1.0,0.0,LINEAR,0.0,255.0,millisec,INITIAL
DELAY BEFORE FIRST PIXEL BURST

SimTime,SIM_TIME,0x00102D2,1,0x0E000000,SIMPLE,SIMPLE,FLOAT,UCHAR,1.0,0.0,LINEAR,10.0,255.0,Time,PERIOD
BETWEEN PIXEL BURSTS IN UNITS 100ns

SimFowler,SIM_FOWLER,0x00102D5,1,0x0E000000,SIMPLE,SIMPLE,FLOAT,UCHAR,1.0,0.0,LINEAR,0.0,255.0,Samples,NUMBER
OF FOWLER SAMPLES PER READOUT IN IR MODE

SimChannels,SIM_CHANNELS,0x00102D3,1,0x0E000000,SIMPLE,SIMPLE,FLOAT,UCHAR,1.0,0.0,LINEAR,0.0,255.0,Pixels,NUMBER
OF PIXELS TO GENERATE FOR EACH BURST

SimCols,SIM_COLS,0x00102D5,1,0x0E000000,SIMPLE,SIMPLE,FLOAT,UINT,1.0,0.0,LINEAR,0.0,65535.0,Pixels,NUMBER
OF SIMULATED PIXEL COLUMNS

SimRows,SIM_ROWS,0x00102D0,1,0x0E000000,SIMPLE,SIMPLE,FLOAT,UINT,1.0,0.0,LINEAR,0.0,65535.0,Pixels,NUMBER
OF SIMULATED PIXEL ROWS

SimData,SIM_DATA,0x00102FC,1,0x0E000000,RDMSKWRT,RDMSKWRT,FLOAT,UINT,32768.0,0.0,LINEAR,0.0,1.0,Value,0
= INCREMENTAL DATA, 1 = NOISE

SimMode,SIM_MODE,0x00102FC,1,0x0E000000,RDMSKWRT,RDMSKWRT,FLOAT,UINT,8192.0,0.0,LINEAR,0.0,3.0,Value,0
= DISABLED,1 = CCD MODE,2 = IR MODE,3 = TIMESLOT REPLACEMENT MODE

4.5 Appendix V – csv file for MCB

PAN Attribute Name ,DHE Func Name ,Base Address ,Number of elements ,Creg ,Set Method ,Read Method ,PANType ,DHEType ,
Coef1 ,Coef2 ,Function ID,Min Value ,Max Value ,UnitName ,HelpText ,,

intTime ,SEQ_ITR ,0x0010000 ,1,0x02000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1000,0,LINEAR ,0 ,4294967.295 , Second ,Set this
register to the desired total integration time of an exposure. Timing resolution is 1 millisecond ,,

mcbBkplnSlct ,MCB_BCKPLN_SLCT ,0x0010100 ,1,0x05000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,32768,0, LINEAR ,0,1,Boolean ,Set
this function to 1 when using MCB in an 8 slot Schroff Backplane ,,

mcbClkEnables ,MCB_CLKENABLES ,0x0010100 ,1,0x05000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,255,Value ,Writing bits
to this register controls the global clock sourcing of SYSCLK to peripheral boards ,,

clkClkEnbl ,MCB_CLK_ENABLE_3 ,0x0010100 ,1,0x05000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,4,0,LINEAR ,0,1,Boolean ,Writing a
one to this function enables the SYSCLK to board 3,,

acqClkEnbl ,MCB_CLK_ENABLE_6 ,0x0010100 ,1,0x05000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,32,0,LINEAR ,0,1,Boolean ,Writing a
one to this function enables the SYSCLK to board 6,,

actIntTime ,SEQ_ITC ,0x0010101 ,1,0x02000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1000,0,LINEAR ,0 ,4294967296 , Second ,Reading
this register returns the agregate integration time. Timing resolution is 1 millisecond.,,

mpuStrtVctr ,SEQ_CMD_STARTVCTR ,0x0010102 ,1,0x06000000 ,NOMETHOD ,RDMSKWRT ,FLOAT ,UINT ,16,0,LINEAR ,0,255,Boolean ,
Reading this function returns the start exposure vector in the sequencer control register ,,

seqCmds ,SEQ_CMDS ,0x0010102 ,1,0x06000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0 ,65535,Value ,Reading this register
returns the global data in the sequencer control register ,,

Usr1Flag ,SEQ_CMD_USER1 ,0x0010102 ,1,0x06000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,8192,0,LINEAR ,0,1,Boolean ,This
function sets or reads the sequencer user bit 1 in the sequencer control register ,,

contRun ,SEQ_CMD_USER0 ,0x0010102 ,1,0x06000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,4096,0,LINEAR ,0,1,Boolean ,This function
sets or reads the sequencer user bit 0 in the sequencer control register ,,

Usr2Flag ,SEQ_CMD_USER2 ,0x0010102 ,1,0x06000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,16384 ,0 ,LINEAR ,0,1,Boolean ,This
function sets or reads the sequencer user bit 2 in the sequencer control register ,,

Usr3Flag ,SEQ_CMD_USER3 ,0x0010102 ,1,0x06000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,32768 ,0 ,LINEAR ,0,1,Boolean ,This
function sets or reads the sequencer user bit 3 in the sequencer control register ,,

51

4.5 Appendix V – csv file for MCB 4 APPENDIX

loopregs ,SEQ_LOOPREGS ,0x0010110 ,16,0 x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0 ,65535,Value ,Read / write all
loop registers ,,

loopreg0 ,SEQ_LOOPREG [0],0 x0010110 ,1,0x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,Value ,Read / write to
loop register 0,,

loopreg1 ,SEQ_LOOPREG [1],0 x0010111 ,1,0x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,Value ,Read / write to
loop register 1,,

loopreg2 ,SEQ_LOOPREG [2],0 x0010112 ,1,0x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,Value ,Read / write to
loop register 2,,

loopreg3 ,SEQ_LOOPREG [3],0 x0010113 ,1,0x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,Value ,Read / write to
loop register 3,,

loopreg4 ,SEQ_LOOPREG [4],0 x0010114 ,1,0x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,Value ,Read / write to
loop register 4,,

loopreg5 ,SEQ_LOOPREG [5],0 x0010115 ,1,0x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,Value ,Read / write to
loop register 5,,

loopreg6 ,SEQ_LOOPREG [6],0 x0010116 ,1,0x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535 ,Value ,Read / write to
loop register 6,,

loopreg7 ,SEQ_LOOPREG [7],0 x0010117 ,1,0x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,Value ,Read / write to
loop register 7,,

loopreg8 ,SEQ_LOOPREG [8],0 x0010118 ,1,0x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,Value ,Read / write to
loop register 8,,

loopreg9 ,SEQ_LOOPREG [9],0 x0010119 ,1,0x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535 ,Value ,Read / write to
loop register 9,,

loopreg10 ,SEQ_LOOPREG [10] ,0 x001011A ,1,0x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0 ,65535 ,Value ,Read / write
to loop register 10,,

loopreg11 ,SEQ_LOOPREG [11] ,0 x001011B ,1,0x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0 ,65535 ,Value ,Read / write
to loop register 11,,

loopreg12 ,SEQ_LOOPREG [12] ,0 x001011C ,1,0x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0 ,65535 ,Value ,Read / write
to loop register 12,,

loopreg13 ,SEQ_LOOPREG [13] ,0 x001011D ,1,0x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0 ,65535 ,Value ,Read / write
to loop register 13,,

loopreg14 ,SEQ_LOOPREG [14] ,0 x001011E ,1,0x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0 ,65535 ,Value ,Read / write
to loop register 14,,

loopreg15 ,SEQ_LOOPREG [15] ,0 x001011F ,1,0x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0 ,65535 ,Value ,Read / write
to loop register 15,,

mcbClkDelay ,MCB_CLKCTRL ,0x0010281 ,1,0x05000000 ,SIMPLE ,SIMPLE ,FLOAT ,UCHAR ,1,0,LINEAR ,0,255,Value ,Control register
for Sysclk Control delay. Delay applies is 19.5ns + Value * 0.5ns,,

mcbFpdpWrt ,MCB_PIX_LED_1 ,0x0010282 ,1,0x0E000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,1,0,LINEAR ,0,1,Boolean ,This function
provides control of the pixel indicator led source 1 -Flash each time a data word (pixel or message) is

written to the Slink FPDP port ,,
mcbFpdpBusy ,MCB_PIX_LED_2 ,0x0010282 ,1,0x0E000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,2,0,LINEAR ,0,1,Boolean ,This

function provides control of the pixel indicator led source 2 - Flash each time the Pixel FPGA is busy
decoding a PAN CMD ,,

mcbPixDataRdy ,MCB_PIX_LED_3 ,0x0010282 ,1,0x0E000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,4,0,LINEAR ,0,1,Boolean ,This
function provides control of the pixel indicator led source 3 - Flash each time a pixel data value is
written to the Slink FPDP port ,,

slinkStats , SLINK_FULLSTATS , 0x0010300 ,22, 0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535 ,values ,List
all register related to slink stats

slinkRcvdDataWL ,SLINK_RCVDDATWL ,0x0010300 ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,words ,How
many data words has been received (16 LSB),,

slinkRcvdDataWH ,SLINK_RcvdDatWH ,0x0010301 ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,words ,How
many data words has been received (16 MSB),,

slinkRcvdCtrlWL ,SLINK_RcvdCtlWL ,0x0010302 ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,words ,How
many control words has been received (16 LSB),,

slinkRcvdCtrlWH ,SLINK_RcvdCtlWH ,0x0010303 ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,words ,How
many control words has been received (16 MSB),,

slinkXferDataWL ,SLINK_XFERDatWL ,0x0010304 ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,words ,How
many data words has been sent (16 LSB),,

slinkXferDataWH ,SLINK_XFERDatWH ,0x0010305 ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,words ,How
many data words has been sent (16 MSB),,

slinkXferCtrlWL ,SLINK_XFERCtlWL ,0x0010306 ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,words ,How
many control words has been sent (16 LSB),,

slinkXferCtrlWH ,SLINK_XFERCtlWH ,0x0010307 ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,words ,How
many control words has been sent (16 MSB),,

slinkXferDataPL ,SLINK_XFERDataPL ,0x0010308 ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535 ,pages ,How
many pages of data words has been sent (16 LSB),,

slinkXferDataPH ,SLINK_XFERDataPH ,0x0010309 ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0 ,65535 ,pages ,How
many pages of data words has been sent (16 MSB),,

slinkXferCtrlPL ,SLINK_XFERCtrlPL ,0x001030A ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535 ,pages ,How
many pages of control words has been sent (16 LSB),,

slinkXferCtrlPH ,SLINK_XFERCtrlPH ,0x001030B ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535 ,pages ,How
many pages of control words has been sent (16 MSB),,

slinkXferDCPL ,SLINK_XFERDCPL ,0x001030C ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0 ,65535 ,pages ,How many
complete pages of data words has been sent (16 LSB),,

slinkXferDCPH ,SLINK_XFERDCPH ,0x001030D ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0 ,65535 ,pages ,How many
complete pages of data words has been sent (16 MSB),,

slinkXferCCPL ,SLINK_XFERCCPL ,0x001030E ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0 ,65535 ,pages ,How many
complete pages of control words has been sent (16 LSB),,

slinkXferCCPH ,SLINK_XFERCCPH ,0x001030F ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0 ,65535 ,pages ,How many
complete pages of control words has been sent (16 MSB),,

slinkFullFlagErr ,SLINK_FFERR ,0x0010310 ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535 ,pages ,Contains
the number of times FullFlag has been set to true.,,

slinkLinkDownErr ,SLINK_LDERR ,0x0010311 ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535 ,pages ,Contains
the number of times LDOWN has been set to true.,,

slinkUpTimeMin ,SLINK_UTM ,0x0010312 ,1,0x0E000000 , NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,min ,System uptime
in minutes ,,

slinkUpTimeSec ,SLINK_UTS ,0x0010313 ,1,0x0E000000 , NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,sec ,Seconds since
last change in slinkUptimeMin ,,

slinkPLI ,SLINK_PLI ,0x0010314 ,1,0x0E000000 , NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535 ,words ,How many words
contains each complete Page ,,

slinkMWI ,SLINK_MWI ,0x0010315 ,1,0x0E000000 , NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535 ,clocks ,How many clocks
does Slink wait before closing an incomplete page ,,

mcbPCBVer ,MCB_PCB_VER ,0x0010600 ,1,0x0C000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,Value ,Hardware
revision of the MCB board layout ,,

mcbSyncDelay ,MCB_SYNC_DELAY ,0x0010601 ,1,0x0E000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,255,nsec ,Used to set/
read delay applied to sync. Delay = 19.5ns + value * 0.5ns,,

reloadMcb ,MCB_RELOAD ,0x0010666 ,1,0x0E000000 ,SIMPLE ,NOMETHOD ,FLOAT ,UINT ,1,0,LINEAR ,0,1,Boolean ,Reload MCB fpga
firmware from eprom ,,

mcbSeqPatMem ,SEQ_PAT_MEM ,0x0011000 ,1,0x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,Value ,Sequencer
pattern memory space (Note actual mem size is 4096 locations),,

52

4 APPENDIX 4.6 Appendix V – Firmware History

mcbSeqPgmMem ,SEQ_PGM_MEM ,0x0014000 ,1,0x06000000 ,SIMPLE ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535,Value ,Sequencer
program memory space (Note actual mem size is 1024 locations),,

mcbSwitchAuto ,MCB_SWITCHAUTO ,0x001FFF8 ,1,0x0E000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,1,0,LINEAR ,0,1,BOOLEAN ,If this
bit is set to ’1’ switches for sync an clock are autogenerated according to master slave setting (pan att
get dheMstr),,

mcbLocalSysClk ,MCB_SYSCLKSWITCH ,0x001FFF8 ,1,0x0E000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,2,0,LINEAR ,0,1,BOOLEAN ,When
mcbSwitchAuto is unset we can set to use local (’1’) or external (’0’) Sysclock signal. External means that
it will use a clock coming from the synchronization interface.,,

mcbLocalSync ,MCB_SYNCSWITCH ,0x001FFF8 ,1,0x0E000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,4,0,LINEAR ,0,1,BOOLEAN ,When
mcbSwitchAuto is unset we can set to use local (’1’) or external (’0’) Sync signal. External means that it
will use a sync coming from the synchronization interface.,,

mcbCurrSysClk ,MCB_CURRSYSCLKSWITCH ,0x001FFF8 ,1,0x0E000000 ,NOMETHOD ,RDMSKWRT ,FLOAT ,UINT ,8,0,LINEAR ,0,1,BOOLEAN ,
Current value of the SysClk Selector. (’1’) -> local; (’0’) -> external ,,

mcbCurrSync ,MCB_CURRSYNCSWITCH ,0x001FFF8 ,1,0x0E000000 ,NOMETHOD ,RDMSKWRT ,FLOAT ,UINT ,16,0,LINEAR ,0,1,BOOLEAN ,
Current value of the Sync Selector .(’1’) -> local (’0’) -> external ,,

mcbFpdpRcvDataValid ,MCB_SEQ_LED_1 ,0x001FFF9 ,1,0x0E000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,1,0,LINEAR ,0,1,Boolean ,This
function provides control of the MCB status indicator led source 1 - Flash each time a data word is

received from the PAN ,,
mcbPanBusReq ,MCB_SEQ_LED_2 ,0x001FFF9 ,1,0x0E000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,2,0,LINEAR ,0,1,Boolean ,This

function provides control of the MCB status indicator led source 2 - Flash each time the PAN command decode
logic requests use of the sequencer bus ,,

mcbMpuSeqBusReq ,MCB_SEQ_LED_3 ,0x001FFF9 ,1,0x0E000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,4,0,LINEAR ,0,1,Boolean ,This
function provides control of the MCB status indicator led source 3 - Flash each time the MPU Sequencer logic
requests use of the sequencer bus ,,

serialNumMcb ,MCB_SERNUM ,0x001FFFA ,1,0x0C000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0 ,4294967295 , Value ,Read the
silicon serial number of the board ,,

temperatureMcb ,MCB_TEMPERATURE ,0x001FFFB ,1,0x0C000000 ,NOMETHOD ,SIMPLE ,FLOAT ,TWLVBIT ,10,0,LINEAR ,-128,128,Deg.C,
Read the actual temperature of the board ,,

controlMcb ,MCB_CONTROL ,0x001FFFC ,1,0x0E000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,1,0,LINEAR ,0,65535, Boolean ,Read /
write the global control register for the board ,,

mstrSyncDly ,SEQ_SYNCDELAY ,0x001FFFC ,1,0x06000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,256,0,LINEAR ,0,255,Value ,Sets the
delay time after receiving a start exposure command issuing a master sync pulse between 0 and 256
milliseconds ,,

dheMstr ,DHE_MASTER ,0x001FFFC ,1,0x06000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,16,0,LINEAR ,0,1,Boolean ,Writing a one to
this function establishes the DHE as Master.,,

mpuSeqClkDiv ,SEQ_CLKDIV ,0x001FFFC ,1,0x06000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,4,0,LINEAR ,0,3,Value ,Read / write to
the sequencer MPU master clock divider ,,

mpuIntPause ,SEQ_INTPAUSE ,0x001FFFC ,1,0x06000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,2,0,LINEAR ,0,1,Boolean ,Writing a one
to this function pauses the integration timer writing a zero allows the timer to continue ,,

mcbSeqEnable ,SEQ_ENABLE ,0x001FFFC ,1,0x06000000 ,RDMSKWRT ,RDMSKWRT ,FLOAT ,UINT ,1,0,LINEAR ,0,1,Boolean ,Writing a one
to this function enables the sequencer MPU to run.,,

statusMcb ,MCB_STATUS ,0x001FFFD ,1,0x0E000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0,65535 , Boolean ,Read the status
register for the board ,,

resetMcb ,MCB_RESET ,0x001FFFE ,1,0x0E000000 ,SIMPLE ,NOMETHOD ,FLOAT ,UINT ,1,0,LINEAR ,0,1,Boolean ,Soft reset the board
firmware ,,

boardIdentityMcb ,MCB_IDENT ,0x001FFFE ,1,0x0C000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,1,0,LINEAR ,0 ,65535,Value ,Read the
board identity register ,,

firmwareVerMcb ,MCB_FIRMVERS ,0x001FFFF ,1,0x0C000000 ,NOMETHOD ,SIMPLE ,FLOAT ,UINT ,100,0,LINEAR ,0 ,655.35 ,Value ,Read
the board firmware version register ,,

rebootMcb ,MCB_REBOOT ,0x001FFFF ,1,0x0E000000 ,SIMPLE ,NOMETHOD ,FLOAT ,UINT ,1,0,LINEAR ,0,1,Boolean ,Reload MCB fpga
firmware from eprom ,,

4.6 Appendix V – Firmware History

2010.08.09 - Last changes before holydays

- I’ve added a copy of _acq12 fpa to adapt csv files to our new HW/FW into this package
- Corrected errors in documentation
- Decreased images size in documentation (pdf size from ~7MB down to 1.5MB)
- Added attribute on csv file to see all slink stats registers at same time
- Added attribute on csv file to see all loop registers at same time
- Added csv file into documentation

FWVersion 5.13 (r2063):

- Changed slink statistics. Instead of contain kibiwords now it shows words sent or received.

2010.03.18 - Last steps of production Testbench

FWVersion 5.12 (r1100):

- Removed PULLDOWN modifier from resetInHw pin on mcb.ucf (constrains file). I suspect that this pullup doesn ’t

allow the push button to put resetInHw signal to a High state. I’ve checked it works.

2010.01.08 - Starting to document all this stuff

- Copying Peter Moore pdf documentation to Lyx , so I can start documentation of new MCB based on his docs

2010.01.07 - Welcome back to work

FWVersion 5.11 (r1100):

- On the PCB , reset push button is active high , on firmware it was active low. I Change some names (resetInHw_n

to resetInHw) and polarity.

- Changed time between temperature sensor reads from 1ms to 500ms.

53

4.6 Appendix V – Firmware History 4 APPENDIX

2009.12.28 - kill all the useless pins!

FWVersion 5.10 (r1093):

- Led_Fifo_Full (the red one in the led tower) shows isMaster signal (just for debug)
- added port led_fifofull at mcbFull.vhd
- added led_fifofull at pin E14 in mcb.ucf
- recreated isMaster signal (I deleted it some time ago)

- Removed internal fpga pullup from sysclk pin

FWVersion 5.09 (r1092):

- sync_in and sync_out comes back to normality.
- Removed seq_data_ack port from pixdatamux (I’ve never seen it connected)
- I’ve checked all warnings from synthesis report. Most of them are bus ports which comes from an upper

level and not all its bits are used. This ones doesn ’t worry me.
- on topSeq , mpuEvents is not connected. It was connected to unused signals (check log from

2009.12.22). topSeq.mpuEvents comes from topSeq/mpu_seq/Event_register module which only
generates this register. I delete Event_register.

- I’ve deleted some unused signals (declared , assigned but not readed)

FWVersion 5.08 (r1090):

- Solved HW problems , I start to use normal clock instead of backup clock. Changed xilinx/mcb.ucf
- To debug int_sync and ext_sync paths I temporarily change how sync_out port is generated. Also

invalidated sync_in.
- FW should be reloaded when a write is done to 0xffff (ADDR_FWVERDEC = ADDR_RELOADFW) or to 0x666 (

ADDR_REPROGRAM)

FWVersion 5.07:

As explained somewhere , in new mcb boards (either HW1.1 or HW1 .2) there is no eprom serial memory as in
the NOAO boards. For this reason sda and scl ports can be deleted as they don ’t interface anything ,
and serConfigIfc module can be deleted.

If some day somebody needs non volatile memory to store something , there is a serial number chip with a
1-wire protocol which has non volatile memory. I add to my todo list implement something like what
we had here but using this small memory.

- topPixFpga:
- removed sda and scl:

- removed ports
- removed ser config interface signals
- removed serConfigIfcV42 instance

- removed components IBUF and OBUF
- removed prevously commented code
- removed all reset aliases
- removed all sysclk aliases

- deleted serConfigIfcV42.vhd

2009.12.28 - The joke is to be working without net access (spanish April ’s fool day)

FWVersion 5.06:

- Deleted some previously comented code
- Created externSelec module. This module is used to select if we want to use external clk and sync or

use the ones on the board. By default if the board is set to master it uses internal sync and clock ,
if the board is set as slave it uses external signals. If bit 0 of this register is set to 0 then

clock switch is configured setting bit 1 of switchSelec and switch sync is set by bit 2. When read ,
bit 4 tells us the current value of clock selector , and bit 4 current value of sync selector.

- Yuhuu! We’ve got net again.
- Added constant ADDR_SWITCHES 0xfff8 to write and read switchSelec register.
- Connected led_activity signal to led_fib

2009.12.23 - Coding instead of go shopping

-Change syncDelay component name to delayChipCtrl as it is going to be used to control both sync and clock delay

chips. Also renamed file.
-Created delayChips component
-Instantiated components in sequencer
-Modified ports in topSeq and mcbFull
-Modified pins in mcb.ucf
-Changed tp_xx pins in mcbFull top to testPoints (7:0)
-I’ve checked all this works. The only thing that doesn ’t work is read register 0x601 and register 0x281 (the

ones of the delay chips) But when one writes to this registers , delay chips are programmed and changes its
delay.

-Registers 0x601 and 0x281 output ports were unconnected so I guess that was the problem when reading this
registers

2009.12.22 - Merry Christmas

-Change seq/serno_interface.vhd/sn_data output port from 48 bit wide to 32. This made me change ports on

seqPackage , topSeq and PersonalityModule. sn_data is a register which is read through slink and it only
reads the 32LSB.

-Removed ports expose_start , frame_start and temp_rd_stb from personality module. They were unconnected.

-seq/personality_ModuleV45.vhd:
-event_reg was used to generate Expose_start and frame start (both of them were deleted because they were

54

4 APPENDIX 4.6 Appendix V – Firmware History

unconnected)
-event_reg is used only to generate event_hist_reg
-event_hist_reg is used only to generate itself
Then I can delete event_reg and event_hist_reg (I’ve checked in mcbFull.nrg and this signals are

simplified on synthesis)
-MPU_EVENTS is an input to Personality_Module and is used only in event_hist_reg (which I’m going to

delete) so I can delete also this port.
-Removed event_cs , ADDR_EVENTREG , event_reg , event_hist_reg ,

Changes specified above had been tested in a real system and nothing is broken (this is rev 1076 in IES svn)

-At constantsPkg changed constant name from ADDR_CLKCTRLDEC to ADDR_CLKPHASE
-Changed Personality_Module to implement clkPhase Register in topSeq
-Right now I think that it doesn ’t compile (I’m pretty sure), but I want to go home. Tomorrow I will finish this

and some other things I have on the queue.

2009.12.18 - Refactoring is my second name (part III)

These days I’ve been working in other things and checking that all this changes were correct:

-Propagated all changes due to errors on the code from revision 984 to revision 1022.
-Revision 1053 has been checked and it works.
-Tests done are:

-Exposure at 1Kx4K
-ACQ DAC tests (noise test 6)
-ACQ12 All registers test

I continue with changes:
-src/seq/clockenableregister.vhd:

-Changed ports clk2 ,.. clk8 to bp_clk (8 :2)
-Changed some registers to sync reset to async.
-Changed clockenableregister component in packageseq and topseq

-src/seq/topSeq:
-Changed some signal names (xlxn_70 -> clkDataOut ,..)
-Removed some thing.

-src/seq/Pan_comm ...:
-Generate seqWrite_n (add this port)
-change output port pixfifo_wrt_n to pixfifo_wrt (not only the name , also its polarity)
-LocSel register was inside a big process and the ojly things it was doing was delay intboardsel (0) one

cycle , now it has its own process.

-Generation of cmdRdy and SeqDataReq of the old fpga interface are now generated inside the personality module
instead of being generated on the topseq module

-src/seq/topSeqFpga.vhd:
-XLXN_9 -> seq_cmd_sel
-XLXN_10 -> seq_cmd_reg
-XLXN_11 -> wr_int_reg
-XLXN_12 -> seq_int_reg
-XLXN_14 -> seq_lpp_reg
-XLXN_15 -> seq_pat_sel
-XLXN_16 -> seq_pat_mem
-XLXN_18 -> seq_pgm_mem
-XLXN_19 -> status_reg
-XLXN_439 -> led_data
-XLXN_438 -> led_reg_sel
-XLXN_43 -> seq_addrdata_in
-XLXN_214 -> seq_int_ctr
-XLXN_298 -> echoData
-XLXN_450 -> tst_ctr_enable
-XLXN_465 -> tempData
-XLXN_466 -> mpuEvents
-XLXN_464 deleted (temp_rd_stb not connected)

2009.12.10 - Refactoring is my second name (part II)

-Refactoring PanCommandDec:

-intAddrData
-added new state: waitAsync. When the state machine boots it does nothing until it receives an async

command. Once it has received this async command it starts to process comands. Currently when it
boots it goes to state idle , and there we can find a lot of concatenated "if". With this new state I
avoid using this "if"s.

-Changed cmd_decode to a typical async reset register
-Modified mcb.ucf (some errors on pin association)
-Modified mcbFull.vhd to use reset button instead of test point

2009.12.09 - Refactoring is my second name

-FPGA_CTL_6 is an alias of START_EXP in top_seq_fpga. In this last MCB layout it is not connected (pin left

floating), and probably in MCB HW1.1 this also happens. I delete port FPGA_CTL_6 from top_seq_fpga and
mcbFull , and also from ucf file.

-FPGA_CTL_2 is an alias of START_EXP in top_seq_fpga. It is connected to top_pix , and inside top_pix it only
feeds sim_trigger port of pix_fifo. I change its name to simTrigger as I find it more easy to know what it
is.

-FPGA_CTL_1 is an output port from topSeq. Change its name to seqWrt_n

-Refactoring PanCommandDecode:
-locWrt
-intBoardSelect
-PixFifo_Wrt_n
-start_exp_s (added in comments recomendation to try once checked everything works this way)

2009.12.04 - Here we go, again!

55

4.6 Appendix V – Firmware History 4 APPENDIX

-Modified Makefile and genProject
-deleted mcb.prj from subversion (it is automatically generated)
-created folder logs inside xilinx to store logs from make (added to subversion folder and files)

-Learned what is this Asyn stuff. When the fpga boots , sequencer remains in a halt state until it receives an
asyn command (asyn commands = cmd (31:30) are "11"). If it receives another type of command Pan Command
decode discards this commands until it receives one Asyn command. I don ’t know why it does this (probably
something related to the implementation with 2 fpgas), but at least I’m going to clean some things. Right
now there is a component called resetSync which does nothing except notify pancommanddec and ledcontroler if
this asyn command has been received , but is pancommanddec who tells resetsync if an asyn command has been

received. So I will integrate resetSync into Pan command dec.
-Change PanCommandDec port Async_Pending from input to output (its the reset of LedController)
-Delete PanCommandDec output port Sync_Flag (Thats a big mess , sync signal to state an Async has been

received)
-Removed resetSync component from topSeq
-Changed connections between PanCommandDec and LedLatch

-PanCommandDec:
-On state machine if deleted an if condition as it can ’t happen (simplifying the state machine). When we

are in state idle , echoenable is set to ’1’, if in state idle one rd command is received , there was
one option to go to state rdechowait if echoenable was set to ’1’ and another option , which of
course is impossible that it happens.

(Changes only affect implementation , at the end signals should be the same , just to save mental illnes of fw
programmer)

-Changed how tmp_DATA_IN_RD is generated (to simplify state machine)
-Changed how echoEnable is generated
-Changed how echo_data is generated
-Changed implementation of SEQ_BUS_REQ

2009.12.03 - The Show must go on!

-Long time ago there was problems on backplane reads. We found that the problem was that the fpga_ctl_1 signal

between sequencer and pixel modules was too fast so we have to delay it one cycle (in Peter Moore version of
MCB there was an intrinsic delay due to the fact of the time to transfer the signal between fpgas). I don ’t
know why I put this delay (a simple register) in top mcbFull , I put it inside the sequencer module.

-Inside Pan_Command_Decode I’ve found two new constants , HARD_RST_ADDR and SOFT_RST_ADDR:
-Changed its names to ADDR_RELOADFW and ADDR_SOFTRESET.
-Moved definition of this constants to constants.vhd
-updated constants excel file (Not new addresses , but new meaning for existing ones)

-Pan_Command_Decode.vhd:
- Changed "MODE" port from inout to out
- Changed DEVADDR port from inout to out
- Changed ADDRDATA port from inout to out
- Changed BOARD_SELECT port from inout to out

-Sequencer_Bus_Mux.vhd:
-deleted previously commented code

-Pan_Command_decode.vhd:
-Deleted ports HARD_RST and SOFT_RST. Right now they were disconected (I was unaware of this ports and I’

ve implemented more or less the same functionality in Personality Module. I’ve added on my todo list
to add to Personality Module that reloadFW must trigger also with this addresses.

- Deleted all logic that previously implemented HARD_RST and SOFT_RST and also a documentation comment (
WRITES TO ADDRESS 0xFFFF (NOMINAL BOARD CODE REVISION IDENT) ARE CONSIDERED TO BE A HARD RESET
REQUEST. IN SIMILAR FASHION , WRITES TO 0xFFFE (BOARD FUNCTION IDENTITY) ARE DECODED TO PROVIDE A
SOFT RESET TO THE ADDRESSED BOARD .)

-Top: changed bp_spare ports from inout to input.
-Modified genProject script to save some backup files into a tmp folder inside xilinx folder

2009.12.02 - Ara resulta que no és urgent

-Updated all known registers into excel file docs/registers.xls. In comments inside src/pix/pixCmdDecodeV45.vhd

there are more registers explained , but I cannot find inside the code.
-I’ve caught my best axe (aka emacs), let ’s start the bleeding !!! delet ’em all!!
-Changes at pix/topPixFpga.vhd:

-Deleted BUFT component and instances
-Deleted clkxfy ports on topPixFpga component
-Deleted all signal definitions of CLK_CTRL_DEC_CLKxDy
-Deleted ClkCntrlDecodeV40_1 instance
-Deleted:

-CLK_CTRL_DEC_SYSCLK (silly signal)
-CLK_CTRL_DEC_CLK_CS (feed by PIX_CMD_DEC_CLK_CMD_STB)
-CLK_CTRL_DEC_DATA_IN (feed by PIX_CMD_DEC_DATA_OUT (7:0))

-Changes at pix/PixCmdDecodeV45.vhd:
-Deleted CLK_CMD_STB output port
-deleted ClkCtl_cs select signal definition and implementation
-deleted previously commented code sections
-delected comments about address ranges as they were outdated

-Changes at topPixFpga:
-Deleted port CLK_CMD_STB of instance PixCmdDecodeV461 (also deleted from components in packagePixel)

-Changes in pix/regMux.vhd:
-Removed port clkcntrldecdatout and option to output this to dataOut

-Now clkControl is extirped , let ’s implant a new version for the new chip.
-Changes in seq/topSeqFpga.vhd:

-Delete all code commented sections
-Deleted attributes BOX_TYPE , BUFR_DIVIDE , IOSTANDARD , CAPACITANCE , SLEW and DRIVE. Not used.
-created packageSequencer.vhd , which contains all component declarations

-PersonalityModule:
-Instead of output the direct read of the temperature sensor , now we output two ’s complement of the

temperature value.
-Deleted code commented out in lrl_decoder.
-removed pattern_mem.vhd and progmemcore.vhd from seq folder to be sure that the ones used are the ones inside

cores folder

56

4 APPENDIX 4.6 Appendix V – Firmware History

2009.12.01 - I need to test new boards RIGHT NOW!

-On MCBHw1 .2 scl and sda lines are not connected , I’ve commented out this ports from top.
-Bug corrected from last changes in Personality_Module (There was one decode_vector left)
-topSeqFpga.vhd add new port isMaster (selfDescriptive)
-topSeqFpga.vhd deleted component OBUFT and attributes (there isn ’t instances of this component)
-topSeqFpga.vhd deleted component BUFR and attributes (there isn ’t instances of this component)
-topSeqFpga.vhd deleted component BUFG and attributes (there isn ’t instances of this component)
-topSeqFpga.vhd commented out component BUF and attributes. This is a simple buffer , change this to code.
-Added port to top , selClock. This is a selector for the clock (’1’ -> external clock , ’0’ -> local clock). Added

pin on constrains (B11).
-Added port to top , selSync. This is a selector for the clock (’1’ -> external , ’0’ -> local). Added pin on

constrains (A11).
-Commented out clkxfx ports on top.
-Changed default value for SEQCTLREG to set MCB as a Master DHE at boot.
-Added led_activity port on top. Added pin to constrains (D13)
-Added led_link_up port on top. Added pin to constrains (E7)
-led_link_up implemented
-led_activity right now is on when MCB is set as Master (used to debug clock and sync selectors)

-change the firmware version number to adjust to what Peter Moore was using. His last version was 4.61. I started
from scratch (1.0) and using another register. I’m going to use same register as Peter FW and what I was

calling version 1.04 now is going to be 5.04. Peter register makes sense when expressed in base10 , my
register will express the same number but is going to make sense in hex. (V5.05 -> PM way: 0x01f9 , My way: 0
x0505).

-Changed names of constants:
-From FW_VERSION to FWVVERHEX at: pix/PixCmdDecodeV45.vhd , constantsPkg.vhd
-From CODEID to FWVERDEC at seq/Personality_ModuleV45.vhd , constantsPkg.vhd
-From ADDR_CODEIDREG to ADDR_FWVERDEC
-From ADDR_FWVERSREG to ADDR_FWVERHEX

2009.11.30 - changing firmware

Although I’m saving each change I do to the code into our subversion server I start a log to easily know what

changes I did and when. This is for future reference. All previous changes I did on the past can be tracked
using diff between subversion revisions.

-Change in top mcbFull and in mcb.ucf , from clk2 , clk3 ,... clk8 to a bus bp_clk (8 downto 2)
-Commented out ack_n in top ports. Added to todo list to check if in previous versions of the FW this port was

connected , I don ’t remember. Right now it was completely disconnected.
-Changed name of board_slct_n to bp_boardSel_n (bp stands for backplane)
-Changed bus name from spr to bp_spare (backplane spare). They were floating , setted to ’Z’.
-Changed slink signals to xxx to sl_xxx in top
-Changed enable signal name of sync delay chip from delChipE to delChipSyncSel. Now both delay chips (sync and

clock) use the same serial bus , so I must enfatize which delay chip are we selecting with the enable.

-Aesthetics changes in Pan_Command_Decode.vhd
-Removed old code which was commented out in Personality_ModuleV45.vhd
-Added constants CODEID and BOARDID in constants package , removed component IdentityModule from Peronality Module

, Deleted IdentityModule file. Identity Module only implemented this two variables (CODEID and BOARDID).
-Some Aesthetics changes in Personality Module
-Commented out port CMD_ACK in PixCmdDecodeV461 as it was not connected.
-Commented out CsEnable signal in PixCmdDecodeV461 as it was not used in any process
-Some Aesthetics changes in PixCmdDecode.
-In Personality Module changed decode_vector type selector to simple selector which simplifies a lot adding new

registers or memory sectors.

57

	Board Functional Description
	Purpose of Board
	Interface Description
	Slink Interface
	Clock Distribution
	Sequencer Bus Interface
	Reset Transactions
	Write Transactions
	Read Transactions

	Pixel Data Bus Interface
	Synchronization Interface
	JTAG Interface, Reset and Power on Boot.
	Front Panel Indicators

	Register Map / Control Functions
	FW constants
	Former Sequencer fpga registers description
	Integration Time Register (ADDR_SEQINTEGTIME)
	Test Counter Register (ADDR_COUNTREG)
	Clock Enable Register (ADDR_CLOCKEN)
	Integration Timer Counter (ADDR_SEQACTINTTIM)
	Sequencer Command Register (ADDR_SEQCMDREG)
	Sequencer Loop Counters (ADDR_RANGE_SEQLOOP)
	Sequencer Pattern Memory Space (ADDR_RANGE_SEQPATMEM)
	Sequencer Program Code Memory Space (ADDR_RANGE_SEQPRGMEM)
	MCB Sequencer LED Indicator Control Register (ADDR_SEQ_LED)
	Silicon Serial Number Register (ADDR_BOARDSERIAL)
	Board Temperature Register (ADDR_BOARDTEMP)
	MCB Control Register (ADDR_SEQCTLREG)
	MCB Status Register (ADDR_SEQSTATUS)
	MCB Board Identity Code (ADDR_BOARDIDREG) (ADDR_SOFTRESET)
	MCB Firmware Code Revision (ADDR_FWVERDEC)(ADDR_RELOADFW)
	System Clock Phase Control Register (ADDR_CLKCTRLDEC)
	Sync Phase Control Register (ADDR_SYNC_DELAY)
	Synchronization ports selector controller (ADDR_SWITCHES)

	Former Pixel fpga registers description
	Pixel FPGA LED Indicator Control Register (ADDR_LEDLATCH)
	Synchronization Link Serial Bit Register (ADDR_EXTDATALATCH)

	Slink Statistics registers
	Received Data Words (ADDR_SLINK_SRDW)
	Received Control Words (ADDR_SLINK_SRCW)
	Sent Data Words (ADDR_SLINK_SXDW)
	Sent Control Words (ADDR_SLINK_SXCW)
	Transferred Data Pages (ADDR_SLINK_SXDP)
	Transferred Control Pages (ADDR_SLINK_SXCP)
	Transferred Data Complete Pages (ADDR_SLINK_SXDCP)
	Transferred Control Complete Pages (ADDR_SLINK_SXCCP)
	Link Full flag Errors (ADDR_SLINK_SLFFE)
	Link Down Errors (ADDR_SLINK_SLDE)
	Up Time minutes (ADDR_SLINK_SUTM)
	Up Time seconds (ADDR_SLINK_SUTS)
	Page Length Info (ADDR_SLINK_IPL)
	Max Wait Info (ADDR_SLINK_IMW)

	Microcode only registers
	MPU SEQUENCER Enables Register (SEQ_ENBLREG)

	Board Hardware Description
	Power Supplies
	Logic Section
	Clock Generation
	Reset and FPGA Boot Logic
	Jumper ST3

	JTAG Interface
	Options for Building the MCB

	Board Specifications
	Appendix
	Appendix I - Board Identity and Firmware Revision Codes.
	Appendix II - Using the MONSOON SYNC Function
	Introduction
	MONSOON Implementation
	Sample Assembler Code for Synchronized DHE Function

	Appendix III – Master Control Board Sequencer MPU Description
	Introduction
	Sequencer Performance
	Sequencer Interface
	Architecture Overview
	Program Memory (BRAM)
	Pattern Memory (BRAM)
	Stack RAMs (Select-RAM)
	Special Function Registers
	Command Register Definition
	Bit 0: Unconditional Jump
	Bit 1: SYNC_IN
	Bit 2: Integration Timer Terminal Count
	Bit 3: Start Exposure Active High
	Bit 4 to Bit 11: Start Exposure vector
	Bit 12 to Bit 15: User Defined Bit Pattern

	Control Register Definition
	Bit 0: MPU Run:
	Bit 1: PAUSE ITC:
	Bit 3 & bit 2: Sequencer Clock Pre-Scalar
	Bits 4-14: Currently Not Used
	Bits 15: Slave DHE

	Loop Count Registers
	Enable Function Register (EFR)
	Integration Time Register and Control

	Clock Control
	Decode Execution Unit (DEU)
	Program Address Multiplexer
	Program Counter Control Logic
	Instruction Multiplexer
	Pattern Pointer Control Logic
	Output Registers and Control Logic
	Program Counter Stack Control Logic
	Loop Control Logic
	EFR Write Decode
	Delay Control Logic

	Instruction Set for the Sequencer
	Output Instructions
	LPP: Load Pattern Pointer: 4 Nibble (16 bit)
	IPP: Increment Pattern Pointer: 1 Nibble (4-bit)
	DPP: Decrement Pattern Pointer: 1 Nibble (4-bit)
	LDA: Load Device Address (12-bit)
	LMR: Load Mode Register 3 Nibble (12-bit)
	LSR: Load Select Register 3 Nibble (12-bit)

	Control Instructions
	CAL: Call Subroutine: 4 Nibble (16 bit)
	RET: Return 1 Nibble (4-bit)
	JCB: Jump if Control Bit Set. 5 Nibble (20-bit)
	LRB: Loop Begin 2 Nibble (8-bit)
	LPB: Loop Begin 1 Nibble (4-bit)
	LPE: Loop End 1 Nibble (4-bit)

	Delay Instructions
	DMS: Delay Milliseconds 3 Nibble (12-bit)
	DuS: Delay Microseconds 3 Nibble (12-bit)
	DSC: Delay System Clock 3 Nibble (12-bit)
	NOP: No Operation 1 Nibble (4-bit)

	Appendix IV – Synthetic Pixel Generator
	Simulation Mode Register (SIM_MODE)
	Simulation Pixel Rows Register (SIM_PIXROWS)
	Simulation Pixel Columns Register (SIM_PIX COLS)
	Simulation Pixel Time Register (SIM_PIXTIME)
	Simulation Channels Register (SIM_CHANNELS)
	Simulation Delay Register (SIM_DELAY)
	Simulation Integration Register (SIM_INTEGRATE)
	Simulation Fowler Register (SIM_FOWLER)
	Simulation Pipe Register (SIM_PIPE)
	Limitations of the Pixel Generator
	Sample Configuration File Setup

	Appendix V – csv file for MCB
	Appendix V – Firmware History

