
Toward A More Perfect Flat-Field

We find that for our scientific goals it is necessary to improve the flat-field

correction provided by our dome flats by generating a dark-sky or super-sky-flat.

We generate this "delta" correction flat (which is really just accounting for color

differences between the night-sky and our dome lamps, and for our case of trying

to study objects at or below the sky level is appropriate to apply) by combining

multiple object frames, effectively (ideally) rejecting all of the real objects in the

frame and leaving us with a high SNR image of "blank" sky. Unfortunately, any

pupil-ghost image or fringing (present in at least I-band, z'-band, and most red

narrow-band filters) that might be present in your input images are still in this

combined frame. Before you can apply a sky-flat to your images, and assuming

you want to remove the additive pupil-ghost and fringing components from all of

your images, you must first create template pupil-ghost and fringe-correction

frames and subtract scaled versions of these frames from all of your object frames.

If you can live with the errors introduced by just dividing these components out,

you can just use what I call version one of the skyflat, produced by combining all

of the images taken in a given filter over some period of time. For the NDWFS

KPNO 4m data we potentially have to correct for both a pupil-ghost (depending

on the band) and fringing (also wave-length dependent). For the CTIO data only

fringing is a possible correction. For some bands, e.g. R-band, neither of these

corrections is generally necessary. Below we take the most complicated/general

case as an example: generating an I-band super-sky-flat. In order the steps that will

be described are:

0.) Generating "object" masks for each image. These masks will be used to exclude

from the combining process those regions of images that have significant light

from resolvable/identifiable objects.

1.) Using 25 to 30 "object" frames along with sflatcombine and mscpupil to

generate a Pupil template image that can be subtracted from each of the original

object frames.

2.) How to subtract the pupil-ghost using rmpupil from each of your object

frames.

3.) How to generate your fringe correction frame using 25-30 object frames from

which the pupil-ghost has already been removed. You will use the

tasks sflatcombine, mscmedian, mscarith, and mscpupil.

4.) How to remove the fringing from each of your object frames using the

task rmfringe.

5.) How to generate your final super- or dark-sky-flat using sflatcombine.

Making the Pupil Template

The main "trick" we use in generating our dark-sky or "super-sky" flat is that we

have many exposures in a given filter of many different regions of the sky. We

combine these images, excluding objects, to get an image of the sky. In earlier

versions of mscred we relied on having many images to allow us to "reject"

objects. The latest version of IRAF and mscred enable a more sophisticated use of

masks during the combining of images and new software for identifying "objects"

and defects in images that we would want to exclude from a combined super-sky-

flat. Before describing how we combine images to generate the pupil template,

fringe template, and ultimately the super-sky-flat, we will describe how to generate

the "object" masks for each image that will be used to help exclude objects from

the combined sky-flat image.

In IRAF V2.11.3 the default mask type is pl files, which are created and placed

into subdirectories. Masks in multi-extension fits files are not available. In our use

of ccdproc earlier in this guide we generated masks of this pl type. Although in

IRAF V2.12 the default file type for masks is multi-extension fits files, not all

tasks, including ccdproc have been modified to create fits format mask files. Such

tasks still generate the .pl mask type. Only the newest tasks in V2.12 generate .fits

masks. To use pl files in subdirectories for both new and older tasks, at the cl

prompt enter set masktype = pl. To switch back you can set masktype = fits.

Before you can generate the object masks, you will need to load the

package nproto.

epar objmask

PACKAGE = nproto

 TASK = objmasks

images = @obj.list List of images or MEF files

objmasks = @om.list List of output object masks

(omtype = numbers) Object mask type

(skys = @sky.list) List of input/output sky maps

(sigmas =) List of input/output sigma maps

(masks = !BPM) List of input bad pixel masks

(extnames =) Extension names

(logfiles = STDOUT) List of log files\n

(blkstep = 1) Line step for sky sampling

(blksize = -10) Sky block size (+=pixels, -=blocks)

(convolve = block 3 3) Convolution kernel

(hsigma = 3.) Sigma threshold above sky

(lsigma = 10.) Sigma threshold below sky

(hdetect = yes) Detect objects above sky?

(ldetect = no) Detect objects below sky?

(neighbors = 8) Neighbor type"

(minpix = 6) Minimum number of pixels in detected objects

(ngrow = 2) Number of grow rings

(agrow = 2.) Area grow factor

(mode = ql)

Where om.list: and sky.list:

om092 sky092

om093 sky093

om094 sky094

om095 sky095

om096 sky096

om097 sky097

om098 sky098

etc. etc.

You should edit the hidden parameter set objmasks1 and change fitstep = 10,

and fitxorder and fityorder = 1 before proceeding. >epar objmasks1

PACKAGE = nproto

 TASK = objmasks1

(exps =) List of exposure maps

(gains =) List of gain maps

(catalog=) List of catalogs

(catdefs=) List of catalog definitions

(dodetec= yes) Detect objects?

(dosplit= no) Split merged objects?

(dogrow = yes) Grow object regions?

(doevalu= no) Evaluate objects?

(skytype= block) Type of sky estimation

(fitstep= 10) Line step for sky sampling

(fitblk1= 10) Block average for line fitting

(fithcli= 2.) High sky clipping during 1D sky

estimation

(fitlcli= 3.) Low sky clippling during 1D sky

estimation

(fitxord= 1) Sky fitting x order

(fityord= 1) Sky fitting y order

(fitxter= half) Sky fitting cross terms

(blknsub= 2) Number of subblocks per axis

(updates= yes) Update sky during detection?

(sigavg = 4.) Sigma of mean flux cutoff

(sigmax = 4.) Sigma of maximum pixel

(bpval = INDEF) Output bad pixel value

(splitma= INDEF) Maximum sigma above sky for splitting

(splitst= 0.4) Splitting steps in convolved sigma

(splitth= 5.) Splitting threshold in sigma

(sminpix= 8) Minimum number of pixels in split objects

(ssigavg= 10.) Sigma of mean flux cutoff

(ssigmax= 5.) Sigma of maximum pixel

(magzero= INDEF) Magnitude zero point

(mode = ql)

For each image the task objmask combines the existing BPM masks (those

generated by you earlier with ccdproc) with the new objects it finds in the image.

We will expand the description of how this task works in the next version of this

guide. Note that the object masks do not replace the BPM masks, as ultimately we

will be combining subsets of these images to produce deep images in which we

want to still have our objects! The "object" masks are just used for the combining

steps described below.

To be able to subtract the pupil-ghost from the object frames we will need a

template image that can be scaled and then subtracted from these frames. You will

generate your pupil template using mscpupil and an input image that contains a

high signal-to-noise ratio image of the pupil ghost. The "input image" can be a

combined dome-flat from a narrow-band image close in wavelength to your

observed band. We find, however, that the best results come from using an input

image combined from many science frames of different (or dithered) regions of

the sky, an initial "dark-sky" or "super-sky-flat" image. We will first describe how

to generate such an input image, then describe how to use mscpupil to generate

the template.

PACKAGE = mscred

 TASK = sflatcombine

input = @objects_I.list List of images to combine

(output = Sflat990327V1 Output sky flat field root name

(combine= average) Type of combine operation

(reject = ccdclip) Type of rejection

(ccdtype= object) CCD image type to combine

(subsets= yes) Combine images by subset parameter?

(masktype= !objmask) Mask type

(maskvalue= 0.) Mask value

(scale = mode) Image scaling

(statsec=) Image section for computing statistics

(nkeep = 1) Minimum to keep (pos) or maximum to

reject (neg)

(nlow = 1) minmax: Number of low pixels to reject

(nhigh = 1) minmax: Number of high pixels to reject

(mclip = yes) Use median in sigma clipping algorithms?

(lsigma = 6.) Lower sigma clipping factor

(hsigma = 3.) Upper sigma clipping factor

(rdnoise= rdnoise) ccdclip: CCD readout noise (electrons)

(gain = gain) ccdclip: CCD gain (electrons/DN)

(snoise = 0.) ccdclip: Sensitivity noise (fraction)

(pclip = -0.5) pclip: Percentile clipping parameter

(blank = 1.) Value if there are no pixels

(grow = 3.) Radius (pixels) for neighbor rejection

(fd =)

(mode = ql)

The objmask keyword in the image headers should have been added by

the objmasks task run earlier. Note that the sflatcombine task is likely to take

several hours, even on a fast machine.

You used mscpupil when you corrected any dome-flat that had a pupil-ghost

present. However, when you use the task to generate a pupil-template you need to

save the measured "pupil-ghost". This requires setting type=data in the parameter

file for mscpupil. Here is an example of suitable parameters for this step.

PACKAGE = mscred

TASK = mscpupil

input = Sflat990327V1I List of input images

output = Pupil_I List of output images

(masks = BPM) List of masks

(type = data) Output type

(lmedian= no) Subtract line-by-line median?

(xc = 27.) Pattern center offset (pixels)

(yc = 9.) Pattern center offset (pixels)

(rin = 300.) Radius of inner background ring (pixels)

(drin = 20.) Width of inner background ring (pixels)

(rout = 1500.) Radius of outer background ring (pixels)

(drout = 20.) Width of outer background ring (pixels)

(funcin = chebyshev) Inner azimuthal background fitting

function

(orderin= 2) Inner azimuthal background fitting order

(funcout= spline3) Outer azimuthal background fitting

function

(orderou= 2) Outer azimuthal background fitting order

(rfuncti= spline3) Radial profile fitting function

(rorder = 40) Radial profile fitting order

(abin = 0.) Azimuthal bin (deg)

(astep = 0.) Azimuthal step (deg)

(niterat= 3) Number of rejection iterations

(lreject= 3.) Low rejection rms factor

(hreject= 3.) High rejection rms factor

(datamin= INDEF) Minimum good data value

(datamax= INDEF) Maximum good data value

(verbose= yes) Print information?

(fd =)

(mode = ql)

Note that the input image for mscpupil needs to have a high SNR image of the

pupil-ghost and not have objects or other light in the frame (if the frames have

fringing it will not be possible to avoid that contribution). For the NDWFS, we

generate this image, in the above example named Sflat990327V1I (indicating the

first version, V1, of a sky-flat for I-band data taken on March 27, 1999 UT), by

combining 25 to 35 individual object frames that have been processed through the

application of the dome-flat. This produces an image with high SNR in the sky,

pupil-ghost, and fringing. The output file, Pupil_I in the example above, will be an

image containing the pupil-ghost, some fringing signal in the region of the pupil-

ghost, plus some defects due to bad columns in the region of the pupil-ghost. This

image will be scaled and subtracted from the individual object frames

using rmpupil. Here is an example of the parameters for sflatcombine to generate

the input image for mscpupil. The asci file input list of images

to sflatcombine contains one image per line. We usually use 25 to 30 images. We

have successfully used imags from two similar nights if on a single night we did

not have enough images. Note that sflatcombine will append the filter name to the

end of the root name you specify, so the output of the task below would be

Sflat990327V1I.fits.

Now you need to create a mask for the pupil template so that only the relevant parts

of it are used later when we use it to remove the pupil ghost from our science

frames. This is fast step. We use mscpupil again, but with type= mask. This only

has to be done once for all runs and filters with a given instrument. This step is

very quick and you can run it easily using the parameters below for your data. We

will eventually add this mask to the calibration data web page. For now, here is an

example for Mosaic-1 used at the Kitt Peak 4m:

To download this image press the shift key as you click on this

link: Pupil_mask.fits

https://noirlab.edu/science/documents/scidoc1568

PACKAGE = mscred

 TASK = mscpupil

input = "Pupil_I.fits" List of input images

output = "Pupil_mask" List of output images

(masks = "") List of masks

(type = "mask") Output type

(lmedian = no) Subtract line-by-line median?

(xc = 27.) Pattern center offset (pixels)

(yc = 9.) Pattern center offset (pixels)

(rin = 405.) Radius of inner background ring (pixels)

(drin = 20.) Width of inner background ring (pixels)

(rout = 1350.) Radius of outer background ring (pixels)

(drout = 20.) Width of outer background ring (pixels)

(funcin = "chebyshev") Inner azimuthal background fitting function

(orderin = 2) Inner azimuthal background fitting order

(funcout = "spline3") Outer azimuthal background fitting function

(orderout = 2) Outer azimuthal background fitting order

(rfunction = "spline3") Radial profile fitting function

(rorder = 40) Radial profile fitting order

(abin = 0.) Azimuthal bin (deg)

(astep = 0.) Azimuthal step (deg)

(niterate = 3) Number of rejection iterations

(lreject = 3.) Low rejection rms factor

(hreject = 3.) High rejection rms factor

(datamin = INDEF) Minimum good data value

(datamax = INDEF) Maximum good data value

(verbose = yes) Print information?

(fd = "")

(mode = "ql")

Here are some example images created by Frank Valdes:

Object and pupil template with associated masks

Removing the Pupil-Ghost

Now rmpupil can be used to remove the pupil-ghost from the individual object

frames. This routine scales the pupil template generated above, (Pupil_I.fits),

and subtracts it out of the input image. Prior to the current version (4.7) of mscred,

we found it necessary to adjust the scaling interactively (the interactive version

of rmpupil is now called irmpupil in version 4.7 of mscred. In previous

versions, rmpupil was interactive). We now find the non-interactive mode to be

very robust on our data. However, we encourage you to inspect the results to verify

that the task is working well on your data as we have not been able to test this new

version on a diverse set of images. For a description of how the interactive mode

worked with the old version of this task, see version 6.2 of this guide. Below is a

sample parameter listing for the new rmpupil. Note that we have chosen to create

new output images and to indicate that they have been corrected for the pupil-ghost

by adding a "p" to its name. The name of the file used as the template as well as

the adopted scaling are written to the image header.

PACKAGE = mscred

TASK = rmpupil

input = @obj.list List of input mosaic exposures

output = @objp.list List of output mosaic exposures

pupil = Pupil_I Pupil orlist of pupil patterns

masks = @om.list List of object/bad data masks

(pupilmasks = Pupil_mask) Pupil masks

(outtype= sdiff) Output type

(ncblk = 3) Column smoothing for weights

(nlblk = 3) Line smoothing for weights

(extfit = "im[2367]") Extensions to use in scaling fit

(logfile= "") Logfile

(verbose= yes) Verbose?

(mode = "ql")

Inspect the corrected images to verify that the correction was done correctly, i.e.

that the pupil ghost has been removed.

Example images of the pupil ghost have been created by Frank Valdes. Note in

these examples the object masks have been overlaid.

Before and after pupil removal

Making The Fringe Correction Frame

Just as we had to remove the pupil-ghost, we might have to remove the contribution

of fringing from our frames. In a manner similar to that followed to correct for the

pupil-ghost we combine multiple object frames (this time those that have had the

pupil-ghost removed) to produce a new image from which we will construct a

fringe template. This is also a good time to check the accuracy of our subtraction

of the pupil-ghost, since if all the images have been handled properly there will be

no pupil in this new combined sky-flat. Note that the removal of the pupil-ghost

will have partially (in some cases completely) corrected the fringing in the region

of the pupil-ghost. Here is a parameter file for using sflatcombine to generate the

second-pass version (no pupil-ghost, fringing still present) of the sky-flat. The

output image in this example will be named Sflat990327V2I.fits.

PACKAGE = mscred

 TASK = sflatcombine

input = @object_p_I.inlist List of images to combine

(output = Sflat990327V2) Output sky flat field root name

(combine= average) Type of combine operation

(reject = ccdclip) Type of rejection

(ccdtype= object) CCD image type to combine

(subsets= yes) Combine images by subset parameter?

(masktype= !objmask) Mask type

(maskvalue= 0.) Mask value

(scale = mode) Image scaling

(statsec=) Image section for computing statistics

(nkeep = 1) Minimum to keep (pos) or maximum to

reject(neg)

(nlow = 1) minmax: Number of low pixels to reject

(nhigh = 1) minmax: Number of high pixels to reject

(mclip = yes) Use median in sigma clipping algorithms?

(lsigma = 6.) Lower sigma clipping factor

(hsigma = 3.) Upper sigma clipping factor

(rdnoise= rdnoise) ccdclip: CCD readout noise (electrons)

(gain = gain) ccdclip: CCD gain (electrons/DN)

(snoise = 0.) ccdclip: Sensitivity noise (fraction)

(pclip = -0.5) pclip: Percentile clipping parameter

(blank = 1.) Value if there are no pixels

(grow = 3.) Radius (pixels) for neighbor rejection

(fd =)

(mode = ql)

There are several remaining steps required to finally generate the fringe correction

frame. We want our fringe template to only have the signal from the fringing, not

the residual flat-field structure we want to correct with our sky-flat. For this reason,

we run mscmedian on the combined image to generate an image with only the

large-spatial-scale features we do not want in the fringe template, and subtract this

from our initial V2 "sky-flat" (fringe frame) to generate out final fringe template

image. An example parameter file for mscmedian is below.

PACKAGE = mscred

 TASK = mscmedian

input = "Sflat990327V2I" Input mosaic images

output = "MedianTempI" Output mosaic images

xwindow = 129 X window size of median filter

ywindow = 129 Y window size of median filter

(outtype = "median") Output type (median|difference)

(zloreject = -20000.) Lowside pixel value cutoff

(zhireject = 30000.) High side pixel value cutoff

(verbose = yes) Print messages about actions taken by the task

(fmedian = yes) Use fast median algorithm?

(hmin = -20000) Minimum histogram bin

(hmax = 30000) Maximum histogram bin

(zmin = -20000.) Pixel value corresponding to hmin

(zmax = 30000.) Pixel value corresponding to hmax

(fd = "")

(mode = "ql")

This task takes a significant amount of time -- around 90-120 minutes on a Sun

ultra-60. The generation of the finge template can now be completed

using mscarith.

PACKAGE = mscred

 TASK = mscarith

operand1= Sflat990327V2I.fits Operand image or numerical constant

op = - Operator

operand2= MedianTempI.fits Operand image or numerical constant

result = FringeI.fits Resultant image

(extname=) Extension names to select

(title =) Title for resultant image

(divzero= 0.) Replacement value for division by zero

(hparams=) List of header parameters

(pixtype=) Pixel type for resultant image

(calctyp=) Calculation data type

(verbose= no) Print operations?

(noact = no) Print operations without performing them?

(fd1 =)

(fd2 =)

(fd3 =)

(mode = ql)

As we did for the pupil template, we now need to make a mask inidicating the

regions to be used later for the subtraction. For this mask, we want to use only

those extensions not affected by the pupil pattern for estimating the the fringe

scaling. This is discussed in more detail here. We will eventually add this fringe

mask to the calibration data web page. For now, here is an example for Mosaic-1

used at the Kitt Peak 4m:

To download this image press the shift key as you click on this

link: Fringe_mask.fits

http://iraf.noao.edu/projects/mosaic/objmasks/objmasks.html
https://noirlab.edu/science/documents/scidoc1569

PACKAGE = mscred

 TASK = mscpupil

input = FringeI.fits List of input images

output = Fringe_mask List of output images

(masks =) List of masks

(type = mask) Output type

(lmedian= no) Subtract line-by-line median?

(xc = 27.) Pattern center offset (pixels)

(yc = 9.) Pattern center offset (pixels)

(rin = 1500.) Radius of inner background ring (pixels)

(drin = 20.) Width of inner background ring (pixels)

(rout = 8000.) Radius of outer background ring (pixels)

(drout = 20.) Width of outer background ring (pixels)

(funcin = chebyshev) Inner azimuthal background fitting

function

(orderin= 2) Inner azimuthal background fitting order

(funcout= spline3) Outer azimuthal background fitting

function

(orderou= 2) Outer azimuthal background fitting order

(rfuncti= spline3) Radial profile fitting function

(rorder = 40) Radial profile fitting order

(abin = 0.) Azimuthal bin (deg)

(astep = 0.) Azimuthal step (deg)

(niterat= 3) Number of rejection iterations

(lreject= 3.) Low rejection rms factor

(hreject= 3.) High rejection rms factor

(datamin= INDEF) Minimum good data value

(datamax= INDEF) Maximum good data value

(verbose= yes) Print information?

(fd =)

(mode = ql)

Subtracting the Fringe Template from Your Frames

The task rmfringe can now be run on each object frame. This task works in a

similar manner to rmpupil, but works on all 8 CCDs rather than just the central

four. Like rmpupil, we used to run the old version of this task interactively, but

the improved automated version of this task seems to work very well on images

like those taken for the NDWFS (i.e. fields without large spatially extended

sources) and we recommend its use for similar images (the interactive version

of rmfringe is called irmfringe in version 4.7 of mscred. In previous

versions, rmfringe could be interactive). I (BTJ and Valdes) would welcome

hearing about success using and/or problems with the new automated version of

the task.

PACKAGE = mscred

 TASK = rmfringe

input = @objp.list List of input images

output = @objpf.list List of output corrected images

fringe = FringeI.fits Fringe or list of fringe patterns

masks = @om.list List of object/bad data masks

(fringem= Fringe_mask) Fringe masks

(backgro= @sky.list) Lisk of input image backgrounds

(extfit =) Extensions to use in scaling fit

(logfile=) Logfile

(verbose= yes) Verbose?

(mode = ql)

Note that the output file is a new image, in this case we choose to append an "f" to

the existing file name.

Below are some example images created by Frank Valdes. Note in the "Before"

and "After" frames the object masks have been overlaid.

Example of fringing

Before and after comparison of fringe removal.

Generating Your Final Sky-Flat

Now that you have versions of all your object frames that are free of pupil-ghost

images and the effects of fringing, you can finally run sflatcombine one last time

to generate your super- or dark-sky-flat. In the case of I-band data, this is the

third time you will have run sflatcombine. Things would have been easier if you

were working in the R-band. In that case you have no significant pupil-ghost to

correct and no fringing, so the product of your first sflatcombine is likely to have

been suitable to use as your sky-flat. Here is the parameter file for your third pass

of sflatcombine:

PACKAGE = mscred

TASK = sflatcombine

input = @object_pf_I.list List of images to combine

(output = Sflat990327V3) Output sky flat field root name

(combine= average) Type of combine operation

(reject = ccdclip) Type of rejection

(ccdtype= object) CCD image type to combine

(subsets= yes) Combine images by subset parameter?

(masktype= !objmask) Mask type

(maskvalue= 0.) Mask value

(scale = mode) Image scaling

(statsec=) Image section for computing statistics

(nkeep = 1) Minimum to keep (pos) or maximum to

reject(neg)

(nlow = 1) minmax: Number of low pixels to reject

(nhigh = 1) minmax: Number of high pixels to reject

(mclip = yes) Use median in sigma clipping algorithms?

(lsigma = 6.) Lower sigma clipping factor

(hsigma = 3.) Upper sigma clipping factor

(rdnoise= rdnoise) ccdclip: CCD readout noise (electrons)

(gain = gain) ccdclip: CCD gain (electrons/DN)

(snoise = 0.) ccdclip: Sensitivity noise (fraction)

(pclip = -0.5) pclip: Percentile clipping parameter

(blank = 1.) Value if there are no pixels

(grow = 3.) Radius (pixels) for neighbor rejection

(fd =)

(mode = ql)

Now it is finally time to apply the sky flat (Sflat990327V3I.fits in this example) to

the object frames that have had the pupil-ghost and fringe components subtracted

(our obj*pf.fits files). This will be done using ccdproc (see next section of this

guide).

	Toward A More Perfect Flat-Field
	Object and pupil template with associated masks
	Removing the Pupil-Ghost
	Before and after pupil removal

	Making The Fringe Correction Frame
	Subtracting the Fringe Template from Your Frames
	Example of fringing
	Before and after comparison of fringe removal.

	Generating Your Final Sky-Flat

