

Small bodies

P/La Sagra

300163

P/Garradd

λ= **0.5-15** μm

Vis/near-IR

Low-res spectroscopy: λ= **1-2.5** μ**m**

Haumea

imaging (MCAO)

Fast photometry

AO imaging: 0.8-2µm

(occultations)

133P

λ= **1-15** μm

AO imaging: 0.8-2µm

- Asteroids: dry or wet or active (main-belt comets) Low-res spectroscopy:
 - Satellites search and characterization
 - Shape and collision models, Near-Earth Objects
 - Surface composition, search for water & organics
- Comets
 - Near-IR and infrared regions are fundamental to study properties spectroscopy: of released molecules
 - \circ D/H ratio, nuclear spin temperatures of some species (e.g. NH₃, H₂O and dissociated products)
 - Organic and prebiotic chemistry
- Centaurs & Trans-Neptunians are faint, BUT brightest can arcsecond be observed with AO (directly or star appulse)
 - cryo-volcanism activity, ring structures, satellites
 - e.g. Chariklo, Chiron?, Haumea
 - Surface properties and collision history TMT.AAA.BBB.xx.yyy.CCCzz Information Restricted Per Cover Page

Small bodies & their immediate neighborhood

 Moonlets and rings: A study of planetary evolution, solar system dynamics and collisions

(B)

2014-12-06 2014-12-09 Triple asteroid Elektra and Minerva. Yang et al. 2017

Asteroid Hebe Marsset et al. 2017

Origin of water on Earth

- Terrestrial planets got their water via transport from small solar system bodies such as asteroids, comets, trans-Neptunians
- A compositional of the most primitive/icy objects of our solar system (comets, asteroids) will help understand the origin of Earth's water

AO imaging near-IR low/high-

res spectroscopy

Solar system (Cont'd)

Giant planets & satellites

- Atmosphere composition, circulation/dynamics
- Energy budget
- Isotopic ratios and abundances
- Satellites
 - (cryo-)volcanism (e.g. Enceladus, Triton, Pluto)
 - surface/atmosphere composition and boundary conditions
 - Titan: Lake formation and surface/atmosphere interaction
 - Monitoring of Io's volcanoes and Europa's surface
 - Mapping of Europa and search for signature of organic material

Pushing the limits of solar system exploration

ELTs will provide dramatic boost in:

• Sensitivity:

- ~ D² (~10 times the collecting area of Keck, or ~150 times that of HST).
- ~ D⁴ for background limited observations of point sources with Adaptive Optics (AO) (i.e. ~200 times that of today's 8m telescopes)!
 - Fainter, smaller objects become accessible
 - Near-IR spectrophotometry of small/distant bodies/structures near bright objects (e.g. small satellites of giant planets)

• Angular resolution:

 AO will provide ~12 times better spatial resolution than HST

Information Restricted Per Cover Page

Target	Diameter (km)	Distance (in AU)	Angular diam. (")	Nb resolution elements Nb resolution elements		Spatial
				across apparent diam.	across apparent surf.	resolution (km)
Ceres	952	1.63	0.81	130	17012	7
Pallas	545	1.29	0.58	94	8920	6
lo	3644	4.09	1.23	199	39442	18
Europa	3122	4.09	1.05	170	28951	18
Titan	5152	8.09	0.88	142	20156	36
Triton	2706	28.87	0.13	21	436	130
Chiron	220	15.96	0.02	3	9	72
Pluto	2390	34.05	0.10	16	245	153
Charon	1210	34.05	0.05	8	63	153
Mars	6780	0.64	14.55	2352	5531644	3
Jupiter	143000	4.09	48.23	7794	60740203	18
Saturn	120500	8.09	20.55	3321	11026150	36
Uranus	51120	18.24	3.86	624	389997	82
Neptune	49530	28.87	2.37	382	146085	130

Summary

Widespread use of AO (@ high-contrast whenever it makes sense)

- Deformable mirrors with high density of actuators
- Low noise-level wavefront sensors
- Fast real-time-controllers

- Combination of AO with spectrographs
 - IFUs and low/medium-res near-IR spectroscopy (mineralogical study)
 - Fiber-fed high-res VIS/near-IR spectroscopy (planet atmospheres, isotopes studies)

Summary (Cont'd)

Operations constraints:

- Fast instrument mode switch
- Capability to track at non-sidereal rates (including for fast moving targets like NEOs or comets)
- Fast observatory (ToO) and fast target acquisition
- Flexible queue scheduling
- PSF characterization/modeling (deconvolution, PSF reconstruction) for adaptive optics