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ABSTRACT  

The NOAO Data Lab will allow users to efficiently utilize catalogs of billions of objects, augment traditional telescope 
imaging and spectral data with external archive holdings, publish high level data products of their research, share custom 
results with collaborators and experiment with analysis toolkits. The goal of the Data Lab is to provide a common 
framework and workspace for science collaborations and individuals to use and disseminate data from large surveys.  

In this paper we describe the motivations behind the NOAO Data Lab and present a conceptual overview of the activities 
we plan to support. Specific science cases will be used to develop a prototype framework and tools, allowing us to work 
directly with scientists from survey teams to ensure development will remain focused on scientifically productive tasks. 
This will additionally develop a pool of both scientific and technical experts who can provide ongoing advice and 
support for community users as the scope and capabilities of the Data Lab expand. 
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1 INTRODUCTION  
Throughout much of the history of modern astronomy, growth in scientific ambition prompted the field to simply build 
bigger telescopes. While that tradition does continue, our collective ambition is also increasingly finding its outlet in the 
drive to construct ever larger and more complex datasets. As a result, the role of the astronomer is changing from a 
traditional approach of single investigators or small groups collecting, calibrating, and analyzing small sets of data, to 
one of working in big teams to run surveys that generate large collections of data used by broad swaths of the 
community. Those users start with pipelined data products, and then spend the bulk of their time writing software to 
understand the trends and secrets hidden within these large sets of data. This evolution in the culture of astronomy also 
brings several challenges, such as: 1) How do astronomers efficiently access, explore, and visualize datasets that are too 
big to fit on desktop computers? 2) How do large teams coordinate their data analysis activity of massive datasets? 3) 
How do astronomers effectively share large datasets that they have generated themselves with the broader community?  

In this paper, we describe the science case and technological approach for an NOAO Data Lab that will be designed 
to help astronomers meet these challenges for current and future surveys. The goal of the Data Lab is to provide a 
collaborative computing environment for users, in which they can easily access and visualize large datasets, conduct 
experiments on subsets of the data, share analysis recipes and results with collaborators, and publish new large datasets 
for use by the broad community. For the first stages of development, the Data Lab will focus on enabling community 
scientific discovery with DECam-based surveys, including the Dark Energy Survey (DES). These surveys will deliver 
catalogs of such large size that a central database with select data services will be needed in order to allow users to find 
the subset of objects that are scientifically interesting to them. In supporting this science, the Data Lab will play an 
important role in preparing the broad user community for LSST. In the era of LSST operations, the Data Lab will 
continue to serve as a proving ground and incubator for LSST science, with the ability to conduct experiments on subsets 
of the LSST dataset. 
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2 SCIENCE USE CASES 
The first stage of Data Lab development will have as its primary goal to enable science with the first public release 

of the DES catalog, which will be available mid-way through the 5-year DES survey period. In order to build towards 
this goal, the Data Lab will initially develop around results from two smaller prototype programs with data collected 
from DECam. In this section, we outline the usage of DES that we aim to support, and describe the way in which the 
prototype programs anticipate that usage. 

 
2.1 Community Use of DES 

The Dark Energy Survey, which is spending 525 nights on the CTIO 4-meter (Blanco) telescope with DECam over five 
years to survey 5000 sq. deg. of sky around the South Galactic Cap, represents a tremendous scientific opportunity for 
the NOAO community. It will be an unprecedented deep, wide, multi-band and multi-epoch imaging survey, superseded 
only by LSST. As written in the document "Description of the Dark Energy Survey for Astronomers"1, the DES is a 
tiered survey. The overall goal is to achieve 5-sigma point source depths of (g,r,i,z,Y)=(26.5,26.0,25.3,24.7,23.0) at the 
end of 5 years, broken into 10 visits per field and filter, with 2 visits each year. The first observing season, however, has 
focused on 4 patches of a few hundred square degrees observed to full depth, and hence faster cadence. In addition, DES 
contains a dedicated supernova survey, which will concentrate on 10 DECam fields visited ~100 times in each filter, thus 
providing a much more extensive cadence for a small area than the main wide-field survey. The final catalog will be of 
order ~25-40 TB in size. Given the large area of the survey, its depth, and the attention to precision for many of the 
measurements that the main DES science goals demand, the DES catalog and image products are going to be very useful 
for a number of other science projects led by the community. Supporting community use of the DES data is the first 
major goal of the Data Lab.  

We have developed a number of potential community use cases of the DES catalog and associated images. 
These include the detection of substructure in the Galactic halo, which has the potential to answer a number of important 
questions regarding the accretion history of the Galaxy, the distribution of dark matter in the Galaxy, the presence and 
distribution of hot gas in the halo, and the history of interaction of the Milky Way’s satellite dwarf galaxies. The key 
techniques are using deep color-magnitude diagrams (CMDs) to identify stellar populations of interest and then mapping 
these on the sky, as well as tracing structure three dimensionally through specific variable star populations. The 
dedicated supernova DES data will be a particularly rich resource for variable star populations. An additional science use 
case is thus to parse and classify all variable events, which involves analyzing the time series themselves as well as 
associating the DES catalog with external datasets. Finally, the DES catalog will be an excellent source for identifying 
candidate objects for further detailed study at the pixel level, such as looking for low surface brightness streams 
signifying accretion events around a well-defined sample of galaxies from the catalog. 

Our range of use cases point to a set of basic needs for Data Lab users, including:  

1. Database access to the DES catalog 

2. Visualization tools for objects in the database, including an image postage stamp cutout service 

3. Ability to apply complex filters to the database and to store subsets of the data in user-specific tables 

4. Ability to attach custom analysis routines to the database output  

5. Ability to correlate the DES catalog with other datasets 

We will now describe how our two prototype programs will help develop these capabilities prior to the release 
of the public DES catalog. 

 

2.2 Survey of the MAgellanic Stellar History (SMASH) 

SMASH (Survey of the Magellanic Stellar History) is a 30-night NOAO Survey program (PI D. Nidever, U. Michigan) 
aiming to use DECam to identify the full extent of Magellanic Cloud stellar populations, derive the star formation 
histories of the Clouds out to large radius, and detect the debris from their past interactions. By identifying the stellar 
component of the gaseous Magellanic Stream and Leading Arm, SMASH data will also provide an important probe of 



 
 

 
 

 

the Galactic halo, in particular its hot gas content. SMASH follows in the vein of the Outer Limits Survey2, a now 
completed NOAO Survey program, but with a much larger delivered data set. 

The main data products from SMASH will be images in ugriz in 154 fields to depths of ~24 mag per filter, from 
which will be derived a photometric catalog of ~250 million objects, with roughly half of these located in the crowded 
main bodies of the Magellanic Clouds. Additional data products will include the reduced images themselves, calibration 
data from standard star measurements, and artificial star tests in the most crowded areas of the survey. The 
measurements made on the survey data will include astrometric positions, multiband time-stamped photometry, and 
shape measurements. In all, the SMASH data volume will include ~20 TB of imaging data and ~100 GB of catalog data. 

The key technique for SMASH is the same as for the Galactic substructure science case for DES, using deep 
CMDs to isolate potential Magellanic Cloud stellar populations, and then to map the spatial density distributions of those 
populations across the sky using a matched filter. Of critical importance is eliminating as many of the contaminating 
background galaxies as possible. The technique will make use of profile-fit magnitudes in ugriz and star-galaxy 
discrimination from shape measurements and from color distributions. Experiments on the SMASH data have shown 
that with contamination removal, we can detect Magellanic Cloud populations to very low surface density, equivalent to 
~35 mags arcsec-2 in surface brightness.  

 

 
Figure 1. An interactive map allowing visualization of results from SMASH (courtesy of David Nidever). A user clicking 
on a field marker (here Field B) is presented with an image showing the g-i,g CMD of that field. In this figure, the map 
demonstrates the presence of an LMC population 14 degrees away from the LMC center. The tool accesses a static JPEG 
image when a point is clicked; a more advanced implementation in the Data Lab could access the SMASH database itself, 
and allow the user to apply additional constraints to the data before plotting. 

 
What data analysis services hosted by the NOAO Data Laboratory are most needed for SMASH? The ultimate goal 

for these services should be to reduce the full catalog of objects to a subset of interesting objects small enough in size to 
be transferred to a local machine for further processing. The process of reducing the catalog to the most interesting 
objects will include: 
 



 
 

 
 

 

1. Using all of the shape parameters present in the SMASH catalog to establish optimal star-galaxy separation 
based on morphological parameters 

2. Applying color cuts on all of the ugriz measurements for additional background galaxy decontamination 
3. Creating a working list of likely stellar sources that pass the morphological and color-based criteria  
4. From that working list, applying a set of matched filters in color-magnitude space designed to isolate candidate 

stellar populations 
5. Running software to turn the output of those matched filters into surface density maps of isolated stellar 

populations  
 

 One particular innovation of SMASH for sharing results has been the development of an interactive 
visualization tool for exploring the SMASH CMDs (see Figure 1). If linked to the photometric database and filtering 
tools themselves, this tool could form the basis of a powerful interactive data exploration capability, giving rapid 
feedback on the efficacy of the filters applied to the data. 

  
2.3 DECam Survey of the Galactic Bulge 

“A Deep Synoptic Study of the Galactic Bulge” (PI A. Saha, NOAO) is a DECam program that recently completed 10.5 
nights of observing in five fields in the Galactic Bulge. The main scientific goal of the program is to derive the stellar 
population mix in the Bulge, which is thought to contain the imprints of the Galaxy’s earliest formation history. In order 
to allow this analysis, however, one needs to account for the strong and variable extinction present in all Bulge fields.  

The program hinges on deriving nearly extinction free CMDs of the Bulge fields, from which one can then 
derive the star-formation histories and look for unique objects, such as extremely metal-poor stars. To do this, the 
program will use the ~100 RR Lyrae variables that are expected in each field to construct reddening maps. RR Lyrae 
have well-defined intrinsic colors at minimum light, making them excellent probes of extinction along the line of sight.  

The Bulge program data consist of images in five fields in ugriz, with ~40 epochs of observation in each field 
and each band. The data have been processed through the DECam Community Pipeline, and then passed to Saha’s 
custom DoPHOT-based photometric pipeline for deriving photometry. Each field contains ~6 million objects, with 
measurements of photometry, object shapes, time of observation, etc. tabulated over ~20 columns. With five fields and 
40 epochs per field, the complete final catalog will have ~1.2 billion rows in it, resulting in a database ~100 GB in size.  

The DECam Bulge project hinges on the ability to identify and classify the variable stars in the catalog, which we 
expect to comprise ~1% of the total number of objects, or ~300,000 variable stars. The rough workflow will be to: 
 

1. Construct a list of all of the unique objects in the Bulge database 
2. Collect the time series of all measurements at every epoch for those objects 
3. Calculate statistics, such as the variance in the magnitude measurements of each band compared to the expected 

variance from the photometric errors, to identify variable sources 
4. Provide image postage stamp movies of variable sources, to aid in identifying data quality issues 
5. From the list of good candidate variable sources, run analysis routines such as period finders and light curve 

classifiers to identify the bona fide RR Lyrae 
6. Verify the output of these routines interactively 

 

3 DATA LAB COMPONENTS 
The Data Lab will be comprised of various components, both physical and logical, that interoperate to provide a 
complete system for use by astronomers. In this section we describe the data services that function as a starting point for 
some investigation, the data handling tools and services that can be combined with science-specific code to perform an 
analysis, and the infrastructure required to make it all work. Wherever possible we plan to adopt and extend existing 
implementations to meet a specific need, and will rely on standardized interfaces and protocols in developing new tools. 
The components as described here represent the fully realized vision of the Data Lab, however our implementation plan 
(see Sec. 5) is designed to deliver a working baseline system by the end of our prototyping phase.  
 



 
 

 
 

 

3.1 Data Services 

3.1.1 Large Catalog Support 

As seen from the DECam-based science use cases, a critical capability needed in the Data Lab is access to large catalogs 
through databases. The final DES ‘coadd object’ catalog is expected to be 20 TB in size and contain ~2 billion objects 
(with the final individual exposure detection catalog being ~100 TB and ~20 billion rows) (Brian Yanny, personal 
communication, May 29, 2013). The future Dark Energy Spectroscopic Instrument (DESI, in development planning 
now) will require a targeting catalog on the order of the same size (estimated from survey area and depth), in addition to 
whatever final catalogs, reduced imaging data or extracted spectra are produced as part of the survey itself.  

 At this scale of database size, one cannot simply load into a standard single-machine database and remain 
performant for complex queries. The database must be split across multiple machines and queries submitted in parallel 
with results being aggregated before return to the client (see Figure 2). LSST examined the problem for their even larger 
data volume, concluded there is no viable turnkey solution available and began the QServ project3 to handle their 
distributed database needs. 

Based on preliminary analysis, our plan is to adopt a QServ 
solution since the LSST-driven requirements of a low-cost, scalable and 
reliable system are an excellent match to our needs for DES. 
Operationally, hosting a database of this the size will require dedicated 
hardware for the data to be served efficiently, and it is likely that we will 
need to extend the data interfaces developed by the main surveys to 
make the data more useful for other science objectives.  Gaining 
familiarity with QServ as it develops gives the added benefit of 
preparing both the users and us for the LSST operations era. 

In the context of the Data Lab, we would have one, or more, 
large catalogs covering up to 5,000 sq. deg. of the sky (for DES) to 
serve as a starting point for any number of inquiries. Surveys such as 
LSST and SDSS both document the types of queries supported by their 
data*,† and we plan to adapt those query lists to the research needs 
identified by our use-case analysis. Such queries would include the 
ability to do complex SQL queries and sub-setting of the data into 
personal databases (e.g. similar to the SDSS CasJobs and MyDB 
functionality in SkyServer4). The VO Table Access Protocol5 (TAP) 
provides the complex query interface we need; the ability to save a query result to a new user’s database (e.g. the 
familiar the 'MyDB' capability in SDSS) will require a custom implementation since it will be a feature available to all 
data services (both local and remote, both basic and advanced) accessible from the Data Lab but is not specified in the 
TAP protocol. Although our first tools will use direct access to the data during development, TAP provides the needed 
job-control functionality. Combined with the collaborative storage and analysis services (see below) available within the 
Data Lab, the ability to import data into a MyDB-like service from other large data centers means we can reduce the 
number of user up/downloads while making it easier for collaborators to share data and analytical results. 

As with other large survey programs (e.g. 2MASS, SDSS, etc) there will need to be multiple interfaces to the 
data, both programmatic and web-based, in order to satisfy different user scenarios. Using a standard interface to query 
and access the data means we have options for building web portals (e.g. using PHP or JavaScript frameworks) that are 
applicable to all the data services. The programmatic interfaces we can build directly into analysis services to fetch the 
data or in desktop applications for remote use. A multi-language approach‡ ensures that we are not tied to a particular 
programming environment, we know from experience that NOAO users represent a broad spectrum of 
scripting/programming languages and analysis environments. Concentrating development on the data interfaces (at least 

                                                
* https://dev.lsstcorp.org/trac/wiki/db/queries 
† http://cas.sdss.org/dr4/en/help/docs/realquery.asp 
‡ By this we mean a single C/C++ implementation of core functionality with (largely) auto-generated bindings as opposed to separate 
implementations for each language.  High-level tasks will likewise be accessible from many scripting environments; language-specific 
interfaces can be developed as needed and as resources permit. 

Figure 2. In a distributed DB the 
mediation layer sends queries to 
multiple DB instances to execute in 
parallel. Results are aggregated for 
the user. 



 
 

 
 

 

initially) should make the transition to programming with the Data Lab much smoother for users. It is hoped that the 
tools developed by users will then the available through an open source model to provide an even richer scientific 
content to the data (see below for additional detail on this plan). 

 

3.1.2 Image Access for Associated Catalogs 

One of the basic needs identified by the science use cases is for Data Lab users to be able to access the image pixels 
associated with catalog sources, at least at the postage stamp level. The NOAO Science Archive (NSA) is the raw data 
archive of images obtained from a variety of NOAO telescopes and instruments nightly, as well as the archive of 
pipeline-reduced data products; it is the primary distribution mechanism for observer’s data (raw or reduced) via a 
custom web portal. The NSA has its own infrastructure for standardizing data products coming from instruments 
spanning a range of acquisition systems, as well as an archive architecture optimized to support its web interface. This 
serves the intended purpose of principal investigator (PI) data distribution well, however the NSA itself is not easily 
extended to serve as a suitable platform for the data collections we would like to expose in the Data Lab since these 
would almost certainly not meet the requirements of the NSA for archive ingestion. 
 

What makes the NSA a valuable Data Lab resource, however, is the availability of the pipeline-reduced images. 
For NOAO observations this covers only the Mosaic, NEWFIRM, and DECam instruments, for which pipelines exist. 
These instruments, however, accounts for a large fraction of the raw data in the archive, DES reduced data will also 
become available in the NSA as that survey progresses. With the NSA as a resource the Data Lab will thus provide a 
ready-made platform for analysis by NOAO observers as well as a source of reduced data products for other astronomers 
to use for any scientific purpose. Most importantly, DES catalog data can be connected to the original image data 
available in the NSA. 
 

3.2 Analysis Services 

A key capability identified by the science use cases is for users to attach custom analysis workflows to the large 
catalog data and, in some cases, the associated pixels. In this section, we describe our approach to handling the 
communication of such routines with the data as well as tools to aid in the construction of the workflows themselves. 

 

3.2.1 Data Handling Services 

In order to minimize movement of large amounts of data we want to enable as much processing as close to the data store 
as possible, either by web services that know how to access the data or with compute resources available to remote users 
through secure logins or by remote procedure calls. These services must be able to process multiple requests with a 
single call (e.g. lists of objects or queries) and should be able to run either asynchronously or synchronously to fit well in 
the model of both large and small workflows. To satisfy these requirements, interfaces to the virtual storage and private 
database tables are needed in addition to a basic job-control facility or capabilities such as table upload in TAP services. 

As a basic example of the processing we would like to enable, consider the following fictional workflow, which 
emulates the needs identified by our science use cases: 

1. A user submits a query of the DES catalog and gets back a table of 10,000 galaxy positions matching the 
color criteria; she saves this as a text file to her virtual storage space. 

2. These positions are sent to a cutout service to create a 50x50 pixel cutout around each galaxy from parent 
DES images, again saving the cutouts to virtual storage. 

3. A galaxy morphology application the user has uploaded to (or is already available in) the Data Lab is run 
on each image, and the resulting shape parameters are used to select according to user-defined parameters, 

4. The sub-selected object list is used to query for additional image data in infrared, cutouts generated and 
saved, 

5. The user downloads DES data, cutouts and shape information only for objects of interest for further 
analysis on her desktop 



 
 

 
 

 

The final download in this case is many orders of magnitude smaller than the data that generated it. Moreover, this 
process can be repeated easily using different selection criteria or with alternative tools to analyze the cutouts. This 
allows an astronomer to manually execute the steps needed to refine a process before scripting it to build a more 
powerful tool for use on other data or by other users. What makes the Data Lab unique, however, is that (in the fully 
realized vision of the Data Lab) this workflow could be accomplished in the same way using the web, programmatic or 
desktop interfaces.   

 The above example also demonstrates the two types of processing services needed: cutouts are an example of 
generic image processing tools that can be used with any available image, similar tools for catalogs (e.g. cross match or 
table statistics) or spectra (e.g. dispersion rebinning) also fall into this category. These generic tools can be defined as 
standard methods of an image, spectrum or table object in a programmatic interface to hide the details of how it is 
implemented or whether the data are local or remote, allowing the scientist to focus on how the data are analyzed 
instead. In many cases the functionality needed is already available in legacy applications so adding this functionality to 
a programmatic interface is a matter of using a standard method to invoke the task. 

The second type of service is something like the galaxy morphology tool used in the example, i.e. a specific 
science code to operate on the data. In this case the Data Lab can provide interfaces that simplify access to e.g. the 
virtual file storage or databases, however the astronomer must provide the needed analysis tools since the possibilities 
are so open-ended. It is for this reason the Data Lab is adopting a multi-language approach to its tools and interfaces, 
focusing first on support for popular languages such as Python* and R†, but using high-level tasks or a single C-based 
library implementation when possible to provide the core functionality and minimize the language-specific interface 
development required. This approach also makes the system accessible to teams like SMASH/Bulge that might do the 
analysis of the data if a variety on languages without requiring direct support from the Data Lab itself, i.e. analysis could 
be done in IDL and use the command-line tools provided by the Data Lab for data access/movement long before we 
would have direct interfaces available in IDL itself. Similarly, favorite analysis environments routinely provide tools for 
photometry or source detection, however we also want to support user-developed algorithms in the long term. 

Visualization will also be an important part of the processing of large datasets; for web-based tools we can 
provide basic image display and general plotting capabilities using existing tools (e.g. JavaScript versions of DS9‡ or 
Aladin§, SAMP6 interaction with desktop applications) fairly quickly. In scripting environments such as Python, or R 
where specialized plot types are available, we will provide basic plotting tools where needed but the astronomer is free 
to use other preferred plotting tools if they so choose (e.g. by using alternate libraries in their application instead of the 
default ones supplied by the machine). 

 

3.2.2 Advanced Services 

The basic data access services described above are adequate for small collections where the image/spectral data in a 
result table are the correct format and the size is manageable by a user, or the catalog data is topic-specific and all 
columns are needed, or where a coarse positional query with a few common constraints would similarly produce little 
overhead to use. However, large survey catalogs contain information that makes it possible to form complex queries 
based on color characteristics, shape parameters, data quality flags, proximity to other objects and so on; these complex 
queries require an SQL-like syntax to be expressed properly or because multiple database tables are involved, something 
which is not supported by the parameter-based query mechanism of the basic service protocols. Likewise, cross 
matching a user catalog is best done on the large catalog machine and not against downloads on the user’s local desktop. 
In order to satisfy the requirements of the science use cases we want to support in the Data Lab, more advanced data 
services will be required. 

Table Access Protocol (TAP) -- TAP defines a service protocol for accessing database tables and tabular data 
remotely using a modified SQL syntax called ADQL (Astronomical Data Query Language)7 that solves the above 
limitations nicely. TAP exposes the entire set of a database table schema to a client allowing access to survey programs 
with complex data products, the large catalog data that will no doubt be more than a single table, and database tables 

                                                
* http://www.python.org/ 
† http://www.r-project.org/ 
‡ http://ds9.si.edu/ 
§ http://aladin.u-strasbg.fr/ 



 
 

 
 

 

used to operate the Data Lab services. A TAP data service not only permits complex queries of something like the DES 
catalog in a way which can mimic the CasJobs and SkyServer functionalities familiar to SDSS users, but enables simple 
queries against all data services with a single call as well. Requests may be either synchronous or asynchronous to 
support responsive applications even when using long-running queries. This generality however comes at the expense of 
a greater complexity to implement the TAP interface properly, both in collecting the required metadata to deploy 
services, and in creating client software and toolkits to manage the protocol when accessing remote services from within 
the Data Lab. A number of TAP server implementations exist which could serve as the basis for developing a TAP 
service. The available client-side interfaces are all highly language-specific however and thus more difficult to integrate 
into our plan fully. Nevertheless, we expect to be able to make use of existing TAP client code until a better solution is 
possible. 

DataLink – The DataLink protocol8 (again from the VO) links the primary data product in a query result table 
to other associated data or services that might operate on the data. For example, a query might discover a FITS image but 
what the client requires is a JPEG image for display in a web browser; large images (e.g. a stacked DECam image or 
data cube) might contain many more pixels that were requested by a positional search and require a cutout; or a reduced 
image might link back to the raw images used to create the stack. A DataLink service can be used to create all of these 
data products dynamically to give the user exactly what they need or allowing clients to drill-down to more refined data 
products. 

Cross Match – Catalog cross identification is a fundamental tool in analysis workflows, but is also the most 
difficult to generalize because of widely varying requirements of specific problems. In the Data Lab we actually have 
two use-cases to support: the cross match of user-catalogs against Data Lab resources (e.g. DES), and matching tables 
created in the Data Lab with external resources (e.g. SDSS or 2MASS). In the first case we can use the TAP capability to 
upload a user table to perform a simple positional match, in the second case we are at the mercy of capabilities of the 
external service unless the data table is small enough (e.g. a table from a journal or a restricted region of the sky) to 
reasonably import it entirely as just another user table and then rely on the cross-match tools of the Data Lab to do the 
computation. These matching tools might implement different algorithms or produce different output tables and so we 
expect to support a range of cross-match capabilities using both local and remote data services. 

Implementation of these advanced services will be delayed until the Data Lab development is well underway 
due to their complexity. However, clients can make use the basic services to achieve the same effect until then with 
some loss in efficiency. These services are, however, required in order to fulfill the long-term vision of the capabilities 
that will be provided by the platform. 

 

3.3 Virtual Storage 

There are two main motivations for providing a large virtual storage capability in the Data Lab: the analysis services that 
need to save intermediate results or stage data for download at a later time, and to support the sharing of the resultant 
data with other users in a collaboration. The data access protocols all respond immediately with a result table (in the case 
of a query) or direct access to the data as a response to the HTTP request (for data access). Dynamically generated data 
(e.g. image cutouts) are created as part of the request processing and may be staged to a service’s working storage, but 
are otherwise not available to the user unless an identical request made that effectively then creates a new result. 
Similarly, results from traditional access-only data centers can only be shared by disseminating the URL to create the 
result, or more commonly by having one user utilize other mechanisms (e.g. Dropbox*, upload to a project or personal 
web site, etc) to make the data available to their collaborators.  

The Data Lab will solve these shortcomings by providing a large storage area as a basic capability of the 
system. Storage may be allocated in a variety of ways depending on the number of users being supported and the 
resources available, but roughly speaking these break down into the following categories: 

 
Personal Space   A quota allocated to individual users for storage of whatever is deemed necessary. 
   All Data Lab users will be allocated a personal space and may request an increased 
   quota as needed. 

                                                
* http://www.dropbox.com/ 



 
 

 
 

 

 
Transient Space   A working partition with a limited lifespan intended solely for the staging of data  

   during a processing workflow. In some circumstances output may be put into this 
   space assuming it will either be downloaded or transferred to a more permanent  
   space before the data expire. Quotas are not generally imposed on transient spaces  

spaces due to their short-lived nature. 
 

 Collaborative Space A long-term storage facility providing redundant backup meant to support specific  
science collaborations. Access to this space will be by request and subject to app- 
roval and resource availability. 

 
Transient space is managed as a “/staging” directory of either personal or collaborative space and is not counted in 
the quota of space used; effectively, it is a symbolic link to the working storage and under its own resource management. 
Users may request that results be put into any of these spaces using a specific URI or with specialized methods in the 
programmatic/desktop interfaces, services may default to use one type of space over another unless otherwise requested. 
Note that these Data Lab storage spaces can exchange data with other machines using the VOSpace9 protocol (e.g. a 
Data Lab virtual machine running at the user’s institution), effectively creating a download by specifying a remote space 
as the output of a request. 

 System interfaces will allow users to move data between spaces as needed (see Figure 3). For example, a query 
result may be in a transient space unless/until the user moves it to a personal space for permanent storage. If that 
personal space is shared with a collaborator it might then be moved to the project’s collaborative space and then 
downloaded by even more team members much later. Users will have full control over which other Data Lab users have 
access to their personal space, or which users are allowed access to a collaborative space. 

 
Figure 3. A Virtual Storage collaboration example. Results from a query are stored in the Transient space for a short period. 
The PI may move this to longer-term storage; collaborators may independently copy or download the data.  

 

 Existing implementations are available to build the virtual storage scheme we describe; these are based on the 
VOSpace protocol for describing how to use a distributed storage system without specifying the backend storage 
mechanisms directly. Additionally, the VOSpace protocol supports the concepts of capabilities on data nodes (e.g. to 
create an image access service that makes the contents of a directory searchable) and views to describe which formats are 
accepted for input or can be provided on output. The use of views would allow us, for instance, to make all of an 
observer’s raw or reduced data visible in their personal space for a specific proposal without actually moving the data 
until it was accessed, i.e. the space contains a virtual directory listing of a request to the NSA for the data associated with 
a specific proposal-id. Transfer methods between storage nodes is also negotiable, allowing us to implement an optimal 
transport method for the size of the data. Capabilities such as creating a directory that can be synchronized automatically 
between storage nodes (e.g. a Dropbox-like interface), or direct mounting of the space as a user file system, can be 
layered on top of the base VOSpace protocols. Although the bulk of the storage available will be hosted on Data Lab 
hardware, we also expect to make storage nodes available as virtual machines (see below) to run on user’s hardware; this 
will increase the available capacity by letting users host local storage for use in their workflows. 

 



 
 

 
 

 

3.4 Data Publication 

3.4.1 Publication Tools 

A key goal for the Data Lab is to provide an environment for users to share their data and results easily with others.  In 
this section we’ll refer to data publication in the sense of making data available through network services to users. What 
distinguishes this definition from the NSA or large catalog services described above are the data collections themselves 
and how publication will be a central concept in the fully-realized Data Lab. NOAO Survey Program data has a separate 
archiving infrastructure that is no longer in development and so is difficult to update with new data, yet there is an 
ongoing commitment to make these data available to maximize their impact.  

Initially our focus will be on developing basic services for catalog, image and spectral data collections. Later 
stages of the project will implement advanced query and access capabilities to these data (see below). Basic in this case 
refers to a simple (single) positional query with optional parameters to constrain results by bandpass, spatial resolution 
or time of observation (amongst others); queries for large numbers of objects are handled either by an advanced TAP 
service or within the calling application. The data themselves must also be relatively simple initially, e.g. a single flat 
table containing positional information or homogeneous collections of image or spectral data with a WCS. The advanced 
services developed later are better suited to publishing arbitrary tables (or indeed full schema) and to linking complex 
datasets (e.g. collections containing related catalogs, images and spectra). 

The assumption being made is that all of these collections can in some way be mapped to the core set of 
metadata required by the service type; for image data taken with NOAO instruments, this is almost guaranteed. 
However, because the reduction process can be done in a variety of environments we must still rely on the astronomer 
publishing the data to provide the definitive information for the mapping tools (see the discussion of ingestion below), 
ultimately they are the ones responsible for the scientific curation of the data.  The configuration mapping and the data 
files are then fed to the publishing tools to create the service metadata, populate a database to be queried, and then 
deploy the data service endpoint and a minimal project web interface (based on a template). The entire process has to be 
automated as much as possible (see Figure 4) to support many users with minimal staffing, and because over the lifetime 
of the project these services will need to be regenerated multiple times as the software evolves and new features become 
available, or with new releases of the data. To keep the project manageable we will have to impose constraints on the 
data regarding acceptable formats and required/optional keywords; in some cases this may require the data author to 
undertake a major reformatting of the data before it can be accepted. 

 

 
Figure 4. Straw man for the data-publishing tool, example showing catalog publication. 

 

Automation also becomes important when considering the need to publish intermediate data via these interfaces 
during an analysis workflow. For example, an astronomer creates a filtered table of millions of interesting objects from 
the DES catalog that she wants to use as a temporary data resource for their analysis application. Although this filtered 
table can be saved to the MyDB personal table, the applications to be used require that the MyDB table be accessible as 
a data service. Similarly, a survey team may wish to share the data reduced midway through a multi-year program only 
with members of the team using a private service. Services that are publically visible will usually be created and 
maintained by Data Lab staff in partnership with the data author. However a model where astronomers (or tools, or 
indeed other services) can easily create temporary data resources will also be supported once development of the Data 
Lab is complete. 



 
 

 
 

 

A number of data publishing toolkits already exist that each satisfy a different subset of all the requirements 
identified so far, but the most promising of these is the DALServer* project from the VAO. Although DALServer does 
not, yet, supply the advanced capabilities we would like, it has the compelling feature is that the service deployment is 
almost entirely data driven for basic services, and also matches our model of requiring only metadata descriptions and 
data files (or database table) while minimizing development costs. Features such as creating a resource web site will 
require additional descriptive text from the data providers, however the goal of automating the publishing process should 
be easily achieved with scripting. 

 

3.4.2 Registry Services 

As use of the Data Lab data publication system grows, Registry services will be needed in order to make user-published 
data discoverable by other users. We plan to use the VO Registry, and so must be able to provide at least the minimal 
metadata required for a Registry record to be viable. The full resource description is specified by the VO10 and is based 
on the Dublin Core metadata standard†; this provides information such as curation and content metadata (e.g. author 
contact details, scientific subject and descriptive text), coverage metadata (e.g. footprint on the sky, spectral, temporal 
and resolution information) and capabilities of the resource (i.e. the data services provided). Extensions to the core 
resource description exist to further refine the information available to include test queries of a service and detailed 
information about table columns11,12. This level of metadata is something we only expect to generate for permanent 
datasets hosted in the Data Lab and for major resources such as the DES catalog. 

There is no specific requirement that we implement a Registry service ourselves. Unless or until the Data Lab 
hosts a large number of data services, it will suffice to manually register any large catalog resources with an existing 
Registry service. If during operations we find that the number of new services being registered, or updates to existing 
records, becomes burdensome then implementing a local publishing registry (i.e. a small registry of local resources that 
is harvested for records by the wider VO) may become cost effective.  

Populating the XML resource records however, cannot be avoided, although there is much that can be done to 
automate their creation. For collection metadata, a comprehensive web form can be used to gather the information from 
the astronomer and generate the record automatically, and the detailed tabular metadata needed to generate the service is 
sufficient to populate a detailed resource record as well. A simple script using XSLT13 to extract information from the 
XML record is adequate to create the configuration files necessary to deploy the data service or create the project web 
page, however thought will need to be given to the best approach to take that permits easy editing of an existing record 
without resorting to implementing a complete resource database or recreating the record from scratch. 

Temporary data services (e.g. those created to access a MyDB table) can be utilized without being fully 
registered since the access protocols require only a base URL and query parameters. A naming convention should suffice 
to form the base URL in many cases, allowing applications to construct a correct query URL. However we make no 
guarantee that these temporary services will be visible to all components of the Data Lab without a complete registry 
implementation. 

 

3.4.3 Data Ingestion 

The data ingestion process can be summarized as requiring multiple human- and machine-generated metadata files as 
input, tools to scrape information from data files, a common set of processed configuration files as output, and glue code 
to control the entire process. The publication of new (or updated) datasets will be relatively rare (a few times a year 
perhaps), however we expect that as the system evolves it will be necessary to re-ingest data much more often. For data 
authors, detailed documentation describing how to prepare the data files and what metadata is required will be needed to 
guide them through the ingestion process as well. 

 In terms of the data publication process, the metadata about the collection is even more important than the data 
itself. This metadata is used both for discovering individual images, spectra or rows in a table, as well as in describing 
the collection as a whole (e.g. the author’s contact information, the footprint of the survey, descriptive text about the 

                                                
* http://wiki.ivoa.net/internal/IVOA/InterOpMay2010Val/dalserver.pdf 
† http://dublincore.org/documents/dcmi-terms/ 



 
 

 
 

 

scientific content, etc). As such, the process of collecting all the needed metadata requires information that can only be 
supplied by the astronomer/author, in addition to that which can be obtained automatically from the individual data files.  

We will rely on an existing VO standard for a core observation data model to use, the ObsCore DM14. ObsCore 
was developed following an analysis of the data discovery use-cases defining the scope of the needed data model. 
Specifically (quoting from the ObsCore document): 

• Support multi-wavelength as well as positional and temporal searches, 

• Support any type of science data product (image, cube, spectrum, time series, instrumental data, etc), 

• Directly support the sorts of file content typically found in archives (FITS, VOTable, compressed files, 
instrumental data, etc). 

The ObsCore model is similar to the Common Archive Observation Model (CAOM)15 but is much lighter in 
weight, consisting of only about twenty elements needed to describe most data sets. This is adequate for registering a 
service to discover the data, however the CAOM can be used more effectively with advanced services such as TAP as a 
means of querying across multiple data collections. A later implementation of CAOM fortunately does not deprecate use 
of the ObsCore model and so we will defer its use until later in the project. 

For a wide array of different types of data, the list of format-specific issues to be addressed is quite lengthy and 
will make developing an ingestion tool (even one limited to a restricted set of data formats) challenging, however the 
output of such a tool will always be a set of metadata standard across all published datasets. A modular approach to 
building such a tool will provide the greatest flexibility in adapting it to unfamiliar datasets or to extending the 
capabilities of any one phase of the processing. The mapping of derivable metadata or each type of data (catalog or 
image or spectrum) to the ObsCore model will determine the amount of human-supplied information that is required, i.e. 
different web forms will be needed for different types of data. Documentation is also critical to understanding the 
process and reducing errors. 

Finally, it is worth considering when designing the ingest procedures what additional metadata might be 
collected that will benefit advanced features of the Data Lab we would like to implement in the future. For example, 
Multi-order Coverage Maps (MOC)16 specify arbitrary sky regions that could be used in a survey-completion 
visualization tool. The Hierarchical Progressive Surveys (HiPS)17 mechanism from CDS is similar to Google KML* 
mapping technology, and allows a gradual progression of detail in catalog overlays on image displays. Although we can 
extend the ingestion tools and metadata scrapers in the future to create the information needed for these visualizations, 
we would like to avoid reprocessing all of the data so long as gathering this extended information does not unduly 
complicate the ingestion process.  

 

3.5 Packaging as Virtual Machines 

The hardware requirements of the Data Lab will depend on decisions made about how many users and datasets can be 
supported and the development timeline, however we expect to over-subscribe much of the hardware and deploy 
services using virtual machines (VM). This allows us to deploy heavily used resources to dedicated hardware, keep all 
other services online using a single server hosting multiple VMs where the expected load is much lower, and easily 
redeploy services as the system expands. Broadly speaking these VMs can be classified as being storage, publication or 
compute machines. Each type of VM will be configured with a base operating system suited for its purpose; the specific 
Data Lab software will then be added from a central repository allowing us to update the OS or software at any time to 
create a new machine. 

These virtual machines can be created easily but are not limited to use on the Data Lab hardware; users can 
easily download the machine images to be run on their hardware. A storage machine, for example, could run as an 
instance at a user’s institution and work in concert with the Data Lab (or other users) to synchronize files amongst 
collaborators, or a publication machine could be used to host a dataset locally. Most interesting is the idea that a compute 
machine can be deployed in the Data Lab and configured by an astronomer with tools needed for a particular type of 

                                                
* https://developers.google.com/kml/ 



 
 

 
 

 

analysis, and once the system is refined, the entire VM can be moved to a commercial cloud such as Amazon for large-
scale processing. 

Not all of these VMs will be needed for the operational aspects of running the Data Lab, we plan to develop a 
number of machines configured with pre-installed analysis environments to serve as a starting point for development 
machines used by astronomers.  This might include standard installations of Python or R as a programming environment 
or something as complex as a full LSST software installation that could be used to compare output against a trusted 
result without requiring users to configure the system themselves. Providing a library of pre-configured machine types 
makes it much easier for a user to login to their Data Lab account and start work, or else download the needed system for 
local use and interact with the Data Lab remotely. Registry services can be used to keep track of systems in a way that 
allows the system interfaces (see below) to make the best use of local and remote data or services. 

 

4 SYSTEM INTERFACES AND ARCHITECTURE 
The Data Lab will be accessible in a number of ways depending on the intentions and the skill level of the user. Web 
interfaces are convenient for browsing data, but algorithm development can require much lower-level interfaces, and 
both can quickly become a major effort within the project. Although we would like to support development at all levels 
eventually, our initial focus will be on developing command-line tools to provide a high-level capability. These tools can 
be invoked from a wide variety of environments easily and will provide the needed functionality until a more specific 
interface can be implemented.  

Remote execution is a key concept in accessing the Data Lab and can be accomplished in a number of ways. The 
analysis services described above are not much different from the data access services in that they will also have 

RESTful interfaces18 to invoke them and obtain a result, allowing us to 
build the web interface from underlying desktop tools, or likewise to build 
desktop tools that use network services. Existing interfaces to data services 
execute a query and return a result table or image/spectrum collection. 
However, this model doesn’t scale well when the amount of data to be 
transferred in a reasonable time exceeds network capacity, or when a mix 
of local and remote data is required in the analysis. In this case what is 
required is the ability to remotely execute some method close to the data 
and return only a simple status or some equally small bit of information 
(e.g. the statistics of a table column). 

The programmatic interfaces being planned all include the idea of 
location-agnostic data, i.e. an application may use an image, table or 
spectrum object created from a local file or from a URI referencing some 
remote data (e.g. a FITS image in the VOSpace).  Methods called on that 
object may be as simple as reading the values of a table row or performing 
some action such as computing the median of a pixel region, however the 
task is unaware of whether the method is executed on the local machine or 
remotely on the resource in the Data Lab (see Figure 5). Technologies 
such as Pyro* provide remote object execution frameworks that could be 
leveraged in some specific interfaces; the actual implementation will 
depend on the method being called, however. For example, the image 
interface might declare a display() method for displaying an image which 
is implemented using the SAMP messaging protocol to tell a third-party 

display program to load an image (send either a local or remote URI as needed); whereas a readPixels() method would 
require a Pyro or some other low-level RPC mechanism. In keeping with the goal that these methods should minimize 
the amount of data transferred there may not be a direct mapping between what the interface method returns and the 
more general web service doing the same operation. For example, an API execQuery() might create a new result object 
(that could be access remotely) in an interface where the web service might return then entire result table. 

                                                
* https://pypi.python.org/pypi/Pyro4 

Figure 5: A schematic of the 
proposed API architecture showing 
the use of remote execution. 



 
 

 
 

 

In the Data Lab, this architecture will allow applications to be built that permit multiple users to run the same 
application on a single copy of the remote data (with appropriate precautions being taken for simultaneous access), 
minimizing the required data transfer. Because the shared access is done automatically by the interface the astronomer is 
able to concentrate on the science content of the code being developed. 

 

5 IMPLEMENTATION PLAN 
The Data Lab will be developed using a phased approach leading up to full-scale development that is expected to begin 
in FY16. Phase One (P-1) will begin with the work needed to support the SMASH and Bulge science cases and will be 
considered complete when we can support science workflows such as the example given in Sec 3.2.1 above. In this 
section we describe only the work on each of the Data Lab components that provides these needed basic science 
capabilities to be completed during this initial phase, all other component features are deferred and will be prioritized for 
implementation upon later review. 

 

5.1 Large Catalogs 

The DES catalog is the intermediate goal to supporting data on the scale of LSST, but will not be delivered as a first 
release until well after full development of the Data Lab begins. On the other hand, the SMASH and Bulge final survey 
data catalogs are sufficiently challenging to develop the needed tools, will be delivered much sooner, and will 
continually grow in size during our P-1 implementation as the surveys near completion. The survey teams are 
responsible for assembling and preparing the database tables to be used; the starting point for the Data Lab development 
is assumed to be a science-ready catalog.  

For phase one, the focus will be on using these datasets for developing the needed large-database tools rather than 
as a testbed for the QServ database technology needed by catalogs the scale of DES. Example P-1 capabilities to be 
implemented include: 

Query/Table Tools • Command-line tools (scriptable from multiple environments) able to 
submit an SQL query and return a result in a user defined-format for 
download, save to virtual storage, or load into user MyDB. 

• Generic DB table manipulation tools, e.g. column sort, add/delete, 
append, crossmatch, etc 

• Basicic statistical analysis tools and toolkits capable of reading saved 
query result formats 
 

Visualization • General table (1-D and 2-D) plotting utilities 
• Interactive selection of data from plots 
• Catalog overlay on images 

 
User Database 

Parallel Databases 

• Ability to save results to new user table (using an interface façade) 

• Begin prototyping effort to deploy QServ-based catalogs and client 
services 

 

5.2 Analysis Services 

Analysis services during P-1 will be limited to the database and visualization tools above with the exception of a simple 
image cutout task and/or service to provide basic pixel-level access. Positional crossmatch of tables will be supported 
through use of stored procedures in the database to provide optimal performance; more sophisticated crossmatch tools 
are deferred unless implemented by the survey teams themselves. 

 



 
 

 
 

 

5.3 Virtual Storage 

For P-1 development a virtual storage capability is required for saving intermediate results and to support shared use of 
the data by both the SMASH and Bulge teams. We will implement only the ‘collaborative space’ described above with a 
preliminary authentication mechanism to avoid the overhead of account and resource management in the other storage 
types. A programmatic interface to the space will be needed to enable the catalog and analysis tools to store/retrieve data 
and the build the command-line tools needed by the users. 

 

5.4 System Interfaces 

The only significant interface development required for P-1 is to the virtual storage space to allow tasks (both in the Data 
Lab and on the user’s desktop) to move data around. Client-side interfaces to access remote archives already exist and 
will be modified as needed to support VOSpace usage (i.e. saving results directly to the space). The primary interface 
used by the SMASH and Bulge teams will be command-line tools providing a high-level capability since these can be 
invoked from a variety of analysis environments. Low-level APIs used by the Data Lab developers can be made 
available to these teams if requested but are not planned for general release at this stage. Simple web interfaces to 
support the survey teams are possible and will be considered as needed. 

For analysis it is assumed users will either be logged into a virtual machine running in the Data Lab and will thus 
have direct access to the data files, or the analysis is run on a local desktop and data are transferred into and out of the 
Data Lab storage as needed. Since the catalog and other command-line tools can be run over the network to query and 
save results to storage in the Data Lab, and ssh can be used to invoke a task remotely, a workflow (such as the example 
in Sec 3.2.1) can be executed either in the Data Lab or the user’s desktop with no additional development effort. 

 

5.5 Data Publication 

The general publication capability of Survey and PI data products is not needed initially to support either SMASH or 
Bulge since these data will be accessible through standard database interfaces as the analysis proceeds. Once these 
surveys near completion of a final set of data products we will, however, use these data as the basis for developing the 
publishing capability to be generalized later. 

For P-1 development some of the ingestion functionality will be required (e.g. metadata collection) to build tools 
for loading the databases, but the scope can be limited to the data formats used by the SMASH and Bulge teams. In-
house Registry services (and metadata collection) will not be required for P-1 implementation; when needed, required 
services can manually be registered with an existing Registry. 

 

5.6 Packaging as Virtual Machines 

For P-1 development virtual machine images will be required for supporting interactive logins by the SMASH and Bulge 
teams and to create development and test systems. These images can be made available to the teams, as required, but 
there are no plans for scheduled distributions to users. 
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